

On the Cover:
Barclay Tucker is
a free-lance illus-
trator. His com-
pany is Designer
Under The Stairs.

LLtt.. CCooll.. GGlleennnn AA.. PPaallmmeerr

TTrraaccyy SSttaauuddeerr

EElliizzaabbeetthh SSttaarrrreetttt

PPaamm BBoowweerrss

BBeennjjaammiinn FFaacceerr

NNiiccoollee KKeennttttaa

JJaannnnaa JJeennsseenn

801-586-0095
801-777-5633
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
Crosstalk/crostalk.html
www.crsip.hill.af.mil

SSuubbssccrriippttiioonnss: Send correspondence concerning
subscriptions and changes of address to the follow-
ing address.You may e-mail or use the form on p. 18.

Ogden ALC/TISE
7278 Fourth St.
Hill AFB, Utah 84056-5205

AArrttiiccllee SSuubbmmiissssiioonnss:We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at www.stsc.hill.af.mil/
CrossTalk/xtlkguid.pdf. CROSSTALK does not pay for submis-
sions. Articles published in CROSSTALK remain the property of
the authors and may be submitted to other publications.
RReepprriinnttss aanndd PPeerrmmiissssiioonnss:: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
TTrraaddeemmaarrkkss aanndd EEnnddoorrsseemmeennttss:: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center. All product names referenced in this issue
are trademarks of their companies.
CCoommiinngg EEvveennttss: We often list conferences, seminars, sym-
posiums, etc. that are of interest to our readers. There is
no fee for this service, but we must receive the informa-
tion at least 90 days before registration. Send an announce-
ment to the CROSSTALK Editorial Department.
SSTTSSCC OOnnlliinnee SSeerrvviicceess:: at www.stsc.hill.af.mil
Call 801-777-7026, e-mail: randy.schreifels@hill.af.mil
BBaacckk IIssssuueess AAvvaaiillaabbllee:: The STSC sometimes has extra
copies of back issues of CROSSTALK available free of charge.
TThhee SSooffttwwaarree TTeecchhnnoollooggyy SSuuppppoorrtt CCeenntteerr was established
at Ogden Air Logistics Center (AFMC) by Headquarters
U.S. Air Force to help Air Force software organizations
identify, evaluate, and adopt technologies to improve the
quality of their software products, efficiency in producing
them, and their ability to accurately predict the cost and
schedule of their delivery.

SSPPOONNSSOORR

PPUUBBLLIISSHHEERR

AASSSSOOCCIIAATTEE PPUUBBLLIISSHHEERR

MMAANNAAGGIINNGG EEDDIITTOORR

AASSSSOOCCIIAATTEE EEDDIITTOORR

AARRTTIICCLLEE
CCOOOORRDDIINNAATTOORR

CCRREEAATTIIVVEE SSEERRVVIICCEESS
CCOOOORRDDIINNAATTOORR

VVOOIICCEE

FFAAXX

EE--MMAAIILL

CCRROOSSSSTTAALLKK OONNLLIINNEE

CCRRSSIIPP OONNLLIINNEE

CrossTalkDepartments
3 From the Publisher

11 Web Sites

23 Coming Events

34 Letters to the Editor

35 BackTalk

4

12

16

19

24

29

2 CR O S S TA L K The Journal of Defense Software Engineering May 2001

The Spiral Model as a Tool for Evolutionary Acquisition
The Department of Defense has recently rewritten the defense acquisition regulations to
incorporate “evolutionary acquisition,” a strategy that meshes with spiral development.
by Dr. Barry Boehm and Wilfred J. Hansen

Verification and Validation Implementation at NASA
NASA used a new approach to implementing IV&V to all software development throughout
the agency. Here’s how they did it.
by Dr. Linda H. Rosenberg

The Next Refinement to Software
A change in law now requires that all persons with disabilities have equal access to
federal information.
by Keith Thurston

Streamlining Brings Oracle Big Savings, Better Service
Everyone benefits when Oracle makes major internal changes to its e-mail globalization,
network consolidation, and integrated Internet-based applications.
by Steven R. Perkins

Maintaining the Quality of Black-Box Testing
These authors present an automated approach to reducing black-box testing costs while
maintaining quality in testing process and software product.
by Patrick J. Schroeder and Dr. Bogden Korel

Managing the Invisible Aspects of High-Performance Teams
Here are five management lessons that provide insight to the most important,
counter-intuitive aspects of software development.
by RADM Patrick Moneymaker and
Dr. Lynn Carter

BBeesstt BBeesstt PPrraaccttiicceessPPrraaccttiicceess

OOppeenn OOppeenn FFoorruummFFoorruumm

SSooffttwwaarree SSooffttwwaarree EEnnggiinneeeerriinnggEEnnggiinneeeerriinngg TTeecchhnnoollooggyyTTeecchhnnoollooggyy

DDRR.. BBAARRRRYY BBOOEEHHMM WWIILLLL SSPPEEAAKK AATT SSTTCC LLUUNNCCHHEEOONN BB OONN AAPPRRIILL 3300

DDRR.. LLIINNDDAA HH.. RROOSSEENNBBEERRGG WWIILLLL PPRREESSEENNTT OONN MMAAYY 22 -- TTRRAACCKK 1100

HHIIGGHHLLIIGGHHTTEEDD IINN AANN AAPPRRIILL 3300 TTUUTTOORRIIAALL AANNDD OONN MMAAYY 11 -- TTRRAACCKK 88

SSTTEEVVEENN RR.. PPEERRKKIINNSS IISS AA PPLLEENNAARRYY SSPPEEAAKKEERR OONN MMAAYY 22

PPAATTRRIICCKK JJ.. SSCCHHRROOEEDDEERR WWIILLLL PPRREESSEENNTT OONN MMAAYY 33 -- TTRRAACCKK77

RRAADDMM PPAATTRRIICCKK MMOONNEEYYMMAAKKEERR WWIILLLL SSPPEEAAKK AATT SSTTCC LLUUNNCCHHEEOONN CC OONN AAPPRRIILL 3300

If you’ve been on an odyssey (extended journey) looking for the magic formula to suc-
cessful software intensive systems acquisition — stop, relax, and read this edition of

CrossTalk. After 15 plus years of formal software process improvement, numerous case
studies, and more review boards and task forces than we care to list … the secret is now
revealed! Get a good start, do quality work, stay on the right course, and work as a team.
So simple? Not quite — Each step requires a body of knowledge, talented people, superb

leadership, and adequate funding to fuel the program engine.
A good start requires disciplined requirements generation and plotting the right course through

sound systems engineering, coupled with the appropriate acquisition strategy. In their article, The
Spiral Model as a Tool for Evolutionary Acquisition, Dr. Barry Boehm and Wilfred J. Hansen define
the relationship between evolutionary acquisition strategies and spiral development. They also
describe the six essential aspects that every spiral process must exhibit and some “hazardous look-
alikes” that must be recognized. This is a must-read article that summarizes a large body of knowl-
edge related to successful program planning and management.

Obtaining talented people is one of the top issues for most large software development organ-
izations. Retention of software engineers continues to be a major problem for the U.S. Air Force
Air Logistics Centers. Contractors in major technology centers find retention even more difficult.
In the article The Next Refinement to Software, Keith Thurston of the General Services
Administration, Office of Government-Wide Policy, outlines some actions required to ensure tech-
nology is accessible to individuals with disabilities. Designing systems for accessibility is not only
an issue of legal compliance, it’s also a means to better employ the talents of the 54 million
Americans with disabilities.

Because large software-intensive system developments require a myriad of organizations with
different interests (e.g., contractors, users, maintainers, technologists) to function as a team, above
par leadership is essential. In their article, Managing the Invisible, RADM Patrick Moneymaker and
Dr. Lynn Robert Carter outline five principles of leading high-performance teams. They go further
by relaying their real-world illustrations of the principles, showing congruence with the best of
management thought, and then relate them to software process improvement.

Cost reduction programs have become essential to an organization’s ability to maintain suffi-
cient resources to serve customers and accomplish their mission. Steve Perkins, in his article
Streamlined Networking Brings Oracle Big Savings, Better Service, provides insight to how technolo-
gy giant, Oracle, changed the way it managed information to reduce infrastructure cost. While
exploiting the capabilities of technology to reduce operating costs has been a constant through the
ages, the pace of change and number of people involved has certainly increased. The article
describes Oracle’s approach to centralizing system control while concurrently providing employees
improved access to information.

Driven by increased computing power and the desire for more functions, software efforts grow
in size and complexity, which in turn increases the risk of software induced problems. NASA’s Dr.
Linda H. Rosenberg describes how the agency is approaching this issue in Verification and
Validation Implementation at NASA. Establishing a center of expertise, defining criteria for apply-
ing IV&V, and then identifying the projects to participate based on risk are the steps taken by
NASA to improve. Likewise, this trend toward more complexity demands more efficient acceptance
testing. Automating the validation test (e.g., input control, data collection, and recording) is under-
way at many facilities. Prototype systems developed by the Air Force Research Laboratory have
demonstrated how weeks of testing can be reduced to hours. In their article, Maintaining the
Quality of Black-Box Testing, Patrick J. Schroeder and Dr. Bogdan Korel of the Illinois Institute of
Technology, illustrate how combinatorial test designs reduce test efforts without sacrificing quality.

We hope this issue will help bring your cost, schedule, and quality odyssey to a successful con-
clusion.

May 2001 www.stsc.hill.af.mil 3

From the Publisher

Start Your Software Odyssey Here

Lt. Col. Glenn A. Palmer
Director, Computer Resources Support Improvement Program

The Spiral Model as a Tool for Evolutionary Acquisition
Dr. Barry Boehm Wilfred J. Hansen
University of Southern California Software Engineering Institute

Center for Software Engineering

Best Practices DDrr.. BBaarrrryy BBooeehhmm wwiillll ssppeeaakk aatt SSTTCC lluunncchheeoonn BB oonn AApprriill 3300

Since its original publication [1], the
spiral development model diagrammed

in Figure 1 has been used successfully in
many defense and commercial projects. To
extend this base of success, the
Department of Defense (DoD) has recent-
ly rewritten the defense acquisition regula-
tions to incorporate “evolutionary acquisi-
tion,” an acquisition strategy designed to
mesh well with spiral development. In par-
ticular, DoD Instruction 5000.2 subdi-
vides acquisition [2]:

“There are two ... approaches, evolu-
tionary and single step to full capability.
An evolutionary approach is preferred.
… [In this] approach, the ultimate capa-
bility delivered to the user is divided
into two or more blocks, with increasing
increments of capability.” (p. 20)

Here, a block corresponds to a single
product release. The text goes on to speci-
fy the use of spiral development within
blocks:

“For both the evolutionary and single-

step approaches, software develop-
ment shall follow an iterative spiral
development process in which contin-
ually expanding software versions are
based on learning from earlier devel-
opment.” (p. 20)

Given this reliance on the spiral develop-
ment model, an in-depth definition is
appropriate. Two recent workshops pro-
vided one.

The University of Southern California
(USC) Center for Software Engineering
and the Carnegie Mellon University
Software Engineering Institute held two
workshops last year to study spiral devel-
opment and identify a set of critical suc-
cess factors and recommended approaches.
Their results appear in two reports, [3, 4]
and are available on the workshop Web
site www.sei.emu.edu/cbs/spiral2000

The first author’s presentations at
these workshops defined spiral develop-
ment and are followed below. The defini-
tion was first converted to a report [5],

where details, suggestions, and further ref-
erences can be found. Additionally, a fol-
low-on article appearing in a later
CR O S S TA L K issue, will address the rela-
tionships among spiral development, evo-
lutionary acquisition, and the Integrated
Capability Maturity Model.

Spiral Development

Definition and Context
We can begin with a high-level definition
of the spiral development model:

The spiral development model is a risk-
driven process model generator that is
used to guide multi-stakeholder concur-
rent engineering of software-intensive
systems. It has two main distinguishing
features. One is a cyclic approach for
incrementally growing a system’s degree
of definition and implementation while
decreasing its degree of risk. The other is
a set of anchor point milestones for ensur-
ing stakeholder commitment to feasible
and mutually satisfactory system solu-
tions.

The highlighted terms deserve further
explanation:
• Risks are situations or possible events

that can cause a project to fail to meet
its goals. They range in impact from
trivial to fatal and in likelihood from
certain to improbable. Since risk consid-
erations dictate the path a development
must take, it is important that those
risks be cataloged candidly and com-
pletely. See the references for taxonomy
of risks [6] and a method for identifying
them [7].

• A process model answers two main ques-
tions: What should be done next? How
long should it continue? Under the spi-
ral model the answers to these questions
are driven by risk considerations and

Recent Department of Defence policy embodied in the new 5000.1 and 5000.2 series of acquisition regulations strong-
ly emphasizes evolutionary acquisition and the use of spiral development for software. Spiral development has been
used successfully in many commercial systems and in a good number of defense systems. But some ambiguities in pre-
vious spiral model definitions has also led to a good number of unsuccessful projects adopting “hazardous spiral look-
alikes.” This paper provides clearer definitions of a set of six Spiral Model Essentials or critical success factors for spiral
development. It illustrates each with examples, identifies the hazardous look-alikes to avoid, and provides guidelines
for using the spiral model in support of evolutionary acquisition.

4 CR O S S TA L K The Journal of Defense Software Engineering May 2001

Figure 1: Original Spiral Development Diagram

vary from project to project and some-
times from one spiral cycle to the next.
Each choice of answers generates a dif-
ferent process model.

• The cyclic nature of the spiral model is
illustrated in Figure 1. Rather than
develop the completed product in one
step, multiple cycles are performed with
each taking steps calculated to reduce
the most significant remaining risks.

• Each anchor point milestone is a specific
combination of artifacts and conditions
that must be attained at some point.
The sequence of three anchor point
milestones — “LCO,” “LCA,” and
“ICO” — is defined in Spiral Essential
5 (to be discussed). These milestones
impel the project toward completion
and offer a means to compare progress
between one project and another.

Many aspects of spiral development
are omitted in the above definition. The
remainder of this paper expands the defi-
nition by describing six essential aspects
that every proper spiral process must
exhibit. The essentials are sketched in
Figure 2. Each subsequent section
describes a Spiral Essential, the critical suc-
cess factor, reasons why it is necessary, and
the variant process models it allows.
Examples are given. Other process models
that are precluded by the Spiral Essential
are described. Because these may seem to
be instances of the spiral model, but lack
necessary essentials and thus risk failure,
they are called “hazardous spiral look-
alikes.”
Spiral Essential 1: Concurrent

Determination of Key Artifacts

(Operational Concept,

Requirements, Plans, Design,

Code)

For a successful spiral effort, it is vital to
determine balanced portions of certain key
artifacts concurrently and not sequentially.
These key artifacts are the operational
concept, the system and software require-
ments, the plans, the system and software
architecture and design, and the code
components, including COTS, reused
components, prototypes, success-critical
components, and algorithms. Ignoring
this Essential by sequentially determining
the key artifacts will prematurely overcon-
strain the project, and often extinguish the
possibility of developing a product satis-

factory to the stakeholders.
Variants: Within the constraints of this
Essential, variation is possible in the prod-
uct and process internals of the concurrent
engineering activity. For a low technology,
interoperability-critical system, the initial
spiral products will be requirements-inten-
sive. For a high technology, more stand-
alone system, the initial spiral products
will be prototype-code intensive. Also, the
Essential does not dictate the number of
mini-cycles (e.g., individual prototypes for
COTS, algorithms, or user-interface risks)
within a given spiral cycle.
Example: One-Second Response Time

Examples of failure due to omission of this
Essential include premature commitments
to hardware platforms, incompatible com-
binations of COTS components, and
requirements whose achievability has not
been validated. For instance, in the early
1980s, a large government organization
contracted with TRW to develop an ambi-
tious information system for more than a
thousand users. This system was to be dis-
tributed across a campus and offer power-
ful query and analysis access to a large and
dynamic database. Based largely on user
need surveys and an oversimplified high-
level performance analysis, TRW and the
customer fixed into the contract a require-
ment for a system response time of less
than one second.

Two thousand pages of requirements
later, the software architects found that
subsecond performance could only be pro-
vided via a highly customized design that
attempted to cache data and anticipate
query patterns to be able to respond to

each user within one second. The resulting
hardware architecture had more than 25
super-minicomputers caching data accord-
ing to algorithms whose actual perform-
ance defied easy analysis. The estimated
cost was $100 million; see the upper arc in
Figure 3 (See page 6).

Faced with this exorbitant cost, the
customer and developer decided to devel-
op and user-test a prototype. The results
showed a four-second response time with
90 percent user satisfaction. This lower
performance could be achieved with a
modified client-server architecture, cut-
ting development costs to $30 million as
shown by the lower arc in the Figure 3 [8].
Concurrent prototyping would have saved
two years’ time and large-project effort.

Hazardous Spiral Look-Alike:

Violation of Waterfall Assumptions

Essential 1 excludes the use of an incre-
mental sequence of waterfall develop-
ments in the common case where there is
a high risk of violating the assumptions
underlying the waterfall model. These
assumptions are that the requirements are
pre-specifiable, slowly changing, and satis-
factory to all stakeholders, and that a well
understood architecture can meet these
requirements. These assumptions must be
met by a project if the waterfall model is to
succeed. If all are true, then it is a project
risk not to specify the requirements: the
spiral-dictated risk analysis results in a
waterfall approach for this project. If any
assumption is false, then a waterfall
approach will commit the project to trou-
blesome assumptions and requirements

May 2001 www.stsc.hill.af.mil 5

Figure 2: Pictorial Sketch of the Six Spiral Essentials

The Spiral Model as a Tool for Evolutionary Acquisition

mismatches. Here are typical cases that
violate waterfall assumptions:
• Requirements are not generally pre-speci-

fiable for new user-interactive systems,
because of the IKIWISI syndrome.
When asked for their required screen
layout for a new decision-support sys-
tem, users will generally say, “I can’t tell
you, but I’ll know it when I see it (IKI-
WISI).” In such cases, a concurrent pro-
totyping/requirements/architecture
approach is necessary.

• Rapidly changing requirements are well
illustrated by electronic commerce proj-
ects, where the volatility of technology
and the marketplace is high. The time it
takes to write detailed requirements is
not a good investment of the scarce
time-to-market available when it is like-
ly the requirements will change more
than once downstream.

• The architecture and its implications
were the downfall of the one-second
response time example.

Spiral Essential 2:: Each Cycle

Does Objectives, Constraints,

Alternatives, Risks, Review,

and Commitment to Proceed

Spiral Essential 2 identifies the activities
that need to be done in each spiral cycle.
These include consideration of critical
stakeholder objectives and constraints,
elaboration and evaluation of project and
process alternatives for achieving the
objectives subject to the constraints, iden-
tification and resolution of risks attendant
on choices of alternative solutions, and
stakeholders’ review and commitment to

proceed based on satisfaction of their crit-
ical objectives and constraints. If all of
these are not considered, the project may
be prematurely committed to alternatives
that are either unacceptable to key stake-
holders or overly risky.
Variants: Spiral Essential 2 does not man-
date particular generic choices of risk reso-
lution techniques, although guidelines are
available [9]. Nor does this Essential man-
date particular levels of effort for the activ-
ities performed during each cycle. Levels
must be balanced between the risks of
learning too little and the risks of wasting
time and effort gathering marginally use-
ful information.
Example: Windows-Only COTS

Ignoring Essential 2 can lead to wasted
effort in elaborating an alternative that
could have been shown earlier to be unsat-
isfactory. One of the current USC digital
library projects is developing a Web-based
viewer for oversized artifacts (e.g., newspa-
pers, large images). The initial prototype
featured a tremendously powerful and
high-speed viewing capability, based on a
COTS product called ER Mapper. The
initial project review approved selection of
this COTS product, even though it only
ran well on Windows platforms, and the
Library had significant Macintosh and
UNIX user communities. This decision
was based on initial indications that Mac
and UNIX versions of ER Mapper would
be available “soon.” These indications
proved unreliable, however, and the antic-
ipated delay became quite lengthy. So after
wasting considerable effort on ER
Mapper, it was dropped in favor of a less
powerful but fully portable COTS prod-

uct, Mr. SID. The excess effort could have
been avoided had the review team includ-
ed stakeholders from the Mac and UNIX
communities on campus who would have
done the necessary investigations earlier.
Hazardous Spiral Look-Alike:

Excluding Key Stakeholders

Essential 2 excludes the process model of
organizing the project into sequential
phases or cycles in which key stakeholders
are excluded. These omissions are likely to
cause critical risks to go undetected.
Examples are excluding developers from
system definition, excluding users from
system construction, or excluding system
maintainers from either definition or con-
struction. Excluding developer participa-
tion in early cycles can lead to project
commitments based on unrealistic
assumptions about developer capabilities.
Excluding users or maintainers from
development cycles can lead to win/lose
situations, which generally devolve into
lose-lose situations.

Spiral Essential 3: Level of

Effort Driven by Risk

Considerations

Spiral Essential 3 dictates the use of risk
considerations to answer the difficult
questions concerning how much is enough
of a given activity such as domain engi-
neering, prototyping, testing, configura-
tion management, and so on. The recom-
mended approach is to evaluate Risk
Exposure (RE), which is computed as
Probability (Loss) • Size (Loss). There is
risk of project error REerror from doing too
little effort and project delay REdelay from
doing too much. Ideally, the effort
expended will be that which minimizes the
sum REerror + REdelay. This approach applies to
most activities that are undertaken in a
spiral development.
Variants: The variants to be considered
include the choice of methods used to pur-
sue activities (e.g., MBASE/WinWin,
Rational RUP, JAD, QFD, ESP) and the
degree of detail of artifacts produced in
each cycle. Another variant is an organiza-
tion’s choice of particular methods for risk
assessment and management.
Example: Pre-Ship Testing

Risk considerations can help determine
“how much testing is enough” before ship-
ping a product. The more testing that is

Best Practices

6 CR O S S TA L K The Journal of Defense Software Engineering May 2001

Figure 3: Two System Designs: Cost vs. Response Time

done, the lower becomes REerror due to
defects, as discovered defects reduce both
the size of loss due to defects and the prob-
ability that undiscovered defects still
remain. However, the more time spent
testing, the higher is REdelay from losses due
to both competitors entering the market
and decreased profitability on the remain-
ing market share. As shown in Figure 4,
the sum of these risk exposures achieves a
minimum at some intermediate level of
testing. The location of this minimum-
risk point in time will vary by type of
organization. For example, it will be con-
siderably shorter for a “dot.com” company
than it will for a safety-critical product
such as a nuclear power plant. Calculating
the risk exposures also requires an organi-
zation to accumulate a fair amount of cal-
ibrated experience on the probabilities and
size of losses as functions of test duration
and delay in market entry.
Hazardous Spiral Look-Alikes:

Risk Insensitivity

Hazardous spiral model look-alikes
excluded by Essential 3 are:
• Risk-insensitive evolutionary develop-

ment (e.g., neglecting scalability risks).
• Risk-insensitive incremental develop-

ment (e.g., sub-optimizing during
increment 1 with an ad hoc architecture
that must be dropped or heavily
reworked to accommodate future incre-
ments).

• Impeccable spiral plans with no com-
mitment to managing the risks identi-
fied.

Spiral Essential 4:: Degree of

Detail Driven by Risk

Considerations

Where Essential 3 circumscribes efforts,
Essential 4 circumscribes the results of
those efforts; it dictates that risk consider-
ations determine the degree of detail of
artifacts. This means, for example, that the
traditional ideal of a complete, consistent,
traceable, testable requirements specifica-
tion is not a good idea for certain product
components, such as a graphic user inter-
face (GUI) or COTS interface. Here, the
risk of precisely specifying screen layouts
in advance of development involves a high
probability of locking an awkward user
interface into the development contract,
while the risk of not specifying screen lay-
outs is low, given the general availability of
flexible GUI-builder tools. Even aiming
for full consistency and testability can be
risky, as it creates a pressure to premature-
ly specify decisions that would better be
deferred (e.g., the form and content of
exception reports). However, some risk
patterns make it very important to have
precise specifications, such as the risks of
safety-critical interface mismatches
between hardware and software compo-
nents, or between a prime contractor’s and
a subcontractor’s software.

This guideline shows when it is risky
to over specify and under specify software
features:
• If it’s risky to not specify precisely, DO

specify (e.g., hardware-software inter-
face, prime-subcontractor interface).

• If it’s risky to specify precisely, DO NOT
specify (e.g., GUI layout, volatile COTS
behavior).

Variants: Unconstrained by Essential 4
are the choices of representations for arti-
facts (SA/SD, UML, MBASE, formal
specs, programming languages, …).

Example: Risk of Precise

Specification

One editor specification required that
every operation be available through a
button on the window. As a result, the
space available for viewing and editing
became unusably small. The developer was
precluded from moving some operations
to menus because the GUI layout had
been specified precisely at an early step.
(Of course, given too much freedom pro-
grammers can develop very bad GUIs.
Stakeholder review and prototype exercis-
es are necessary to avoid such problems.)
Hazardous Spiral Look-Alikes:

Insistence on Complete

Specifications

It is often risky to undertake a spiral devel-
opment project wherein complete specifi-
cations are pre-specified for all aspects.
Aspects such as those described in the
example should be left to be further
defined during project exploratory phases.

Spiral Essential 5:: Use Anchor

Point Milestones LCO, LCA, IOC
A major difficulty of the original spiral
model was its lack of intermediate mile-
stones to serve as commitment points and
progress checkpoints. This difficulty has
been remedied by the development of a set
of anchor point milestones:

LLCCOO - Life Cycle Objectives - what
should the system accomplish?

LLCCAA - Life Cycle Architecture - what
is the structure of the system?

IIOOCC - Initial Operating Capability -
the first released version.

(The artifacts for each are provided by an
electronic process guide [10] and are also
used by the Rational Unified Process.)

The focus of the LCO review is to
ensure that at least one architecture choice
is viable from a business perspective. The
focus of the LCA review is to commit to a
single detailed definition of the project.
The project must have either eliminated
all significant risks or put in place an
acceptable risk-management plan. The
LCA milestone is particularly important,
as its pass/fail criteria enables stakeholders
to hold up projects attempting to proceed
into evolutionary or incremental develop-
ment without a life cycle architecture.
Each milestone is a stakeholder commit-
ment point: at LCO the stakeholders

May 2001 www.stsc.hill.af.mil 7

Figure 4: Pre-Ship Test Risk Exposure

Risk Exposure
RE =
Size (Loss) •
Pr (Loss)

Amount of testing; Time to market

10

8

6

4

2

REdelay
Market share losses

RE (total)

REerror
Defect losses

The Spiral Model as a Tool for Evolutionary Acquisition

commit to support building architecture;
at LCA they commit to support initial
deployment; at IOC they commit to sup-
port operations. Together the anchor point
milestones avoid analysis paralysis, unreal-
istic expectations, requirements creep,
architectural drift, COTS shortfalls and
incompatibilities, unsustainable architec-
tures, traumatic cutovers, and useless sys-
tems.
Variants: One appropriate variant of
Essential 5 is the number of spiral cycles
between anchor points. Another possible
variant is to merge anchor points. In par-
ticular, a project using a mature and
appropriately scalable fourth generation
language (4GL) or product line frame-
work will have already determined its
architecture by its LCO milestone,
enabling the LCO and LCA milestones to
be merged.
Example: Stud Poker Analogy

A valuable aspect of the spiral model is its
ability to support incremental commit-
ment of corporate resources rather than
requiring a large outlay of resources to the
project before its success prospects are well
understood. Funding a spiral development
can thus be likened to the game of stud
poker. In that game, you put a couple of
chips in the pot and receive two cards, one
hidden and one exposed. If your cards
don’t promise a winning outcome, you can
drop out without a great loss. This corre-
sponds to cancelling a project at or before
LCO. If your two cards are both aces, you
will probably bet on your prospects aggres-
sively (or less so if you see aces among
other players’ exposed cards). Dropping
out of the second or third round of betting
corresponds to cancelling at or before
LCA. In any case, based on information
available, you can decide during each
round whether it’s worth putting more
chips in the pot to buy more information
or whether it’s better not to pursue this
particular deal or project.
Hazardous Look-Alike:

Evolutionary Development Without Life

Cycle Architecture

The LCO and LCA milestones’ pass-fail
criteria emphasize that the system’s archi-
tecture must support not just the initial
increment’s requirements, but also the sys-
tem’s evolutionary life-cycle requirements.
This avoids the hazardous spiral look-alike
of an initial increment optimized to pro-

vide an impressive early system demon-
stration or limited release, but without
the architecture to support full-system
requirements for security, fault-tolerance,
or scalability to large workloads. Other
important considerations for LCA are that
the initial release ensure continued key
stakeholder participation, that the user
organizations are flexible enough to adapt
to the pace of system evolution, and that
legacy-system replacement be well thought
out. Ignoring these aspects lead to other
hazardous spiral look-alike processes.

Spiral Essential 6:: Emphasis

on System and Life Cycle

Activities and Artifacts
Spiral Essential 6 emphasizes that spiral
development of software-intensive systems
needs to focus not just on software con-
struction aspects, but also on overall sys-
tem and life-cycle concerns. Will the
product satisfy stakeholders? Will it meet
cost and performance goals? Will it inte-
grate with existing business practices?
Will it adapt to organizational changes?
Software developers are apt to fall into
the oft-cited trap: “If your best tool is a
hammer, the world you see is a collection
of nails.” Writing code may be a devel-
oper’s forte, but it is as important to the
project as are nails to a house.
Variants: The model’s use of risk con-
siderations to drive solutions makes it
possible to tailor each spiral cycle to
whatever mix of software and hardware,
choice of capabilities, or degree of pro-
ductization is appropriate.
Example: Order Processing

An example of failure to consider the

whole system occurred with the Scientific
American order processing system in
Figure 5 [11]. Scientific American had
hoped that computerizing the functions
being performed on tabulator machines
would reduce its subscription processing
costs, errors, and delays. Rather than ana-
lyze the sources of these problems, the
software house focused on the part of the
problem having a software solution. The
result was a batch-processing computer
system whose long delays put extra strain
on the clerical portion of the system that
had been the major source of costs, errors,
and delays in the first place. The software
people looked for the part of the problem
with a software solution (their “nail”),
pounded it in with their software hammer,
and left Scientific American worse off than
when they started.

This kind of outcome would have
resulted even if the software automating
the tabulator-machine functions had been
developed in a risk-driven cyclic approach.
However, its Life Cycle Objectives mile-
stone package would have failed its feasi-
bility review, as it had no system-level
business case demonstrating that the
development of the software would lead to
the desired reduction in costs, errors, and
delays. Had a thorough business case
analysis been done, it would have identi-
fied the need to reengineer the clerical
business processes as well as to automate
the manual tab runs.
Hazardous Spiral Look-Alikes:

Logic-Only OO Designs

Models excluded by Essential 6 include
most published object-oriented analysis
and design (OOA&D) methods, which
are usually presented as abstract logical

Best Practices

8 CR O S S TA L K The Journal of Defense Software Engineering May 2001

Figure 5: Scientific American Order Processing

exercises independent of system perform-
ance or economic concerns. For example,
in a recent survey of 16 OOA&D books,
only six listed the word “performance” in
their index, and only two listed “cost.”

Using the Spiral Model for

Evolutionary Acquisition

Both the February and September work-
shops had working groups on the relation-
ships between spiral development and evo-
lutionary acquisition. A primary conclu-
sion was that the relationships differ across
two major DoD acquisition sectors:
• Information systems, such as C4ISR sys-

tems, logistics systems, and manage-
ment systems, in which spiral and evo-
lutionary models coincide well.

• Software-intensive embedded hard-
ware/software systems, in which the
software aspects best follow a spiral
approach, but the hardware aspects need
to follow a more sequential approach to
accommodate lead times for production
facilities, production subcontracts, and
long-lead critical component orders.

Even for embedded systems, however,
spiral approaches can be helpful for syn-
chronizing hardware and software process-
es, and for determining when to apply an
evolutionary, incremental, or single-step
acquisition strategy. For example, Xerox’s
time-to-market process uses the spiral
anchor point milestones as hardware/soft-
ware synchronization points for its printer
business line [12]. Rechtin and Maier
adopt a similar approach in their book, the
Art of Systems Architecting [13].

A good example of the use of a risk-
driven spiral approach to determine a pre-
ferred software/system acquisition strategy
was originally developed for DoD’s MIL-
STD-498, and subsequently incorporated
in IEEE/EIA 12207 [14]. This approach
distinguishes among single-step (once-
through or waterfall), incremental, and
evolutionary acquisition processes as
shown in Table 1. Thus, evolutionary
acquisition avoids defining all require-
ments first, and proceeds in multiple
development cycles, some of which
involve distribution and usage of initial
and intermediate operational capabilities.

Table 2 shows how a spiral risk analy-
sis can be performed during early integrat-
ed product and process definition cycles to
select the most appropriate acquisition
process for a system. The example shown
in Table 2 is for a fairly large, high-tech-
nology C4ISR system. For such a system,
the high risks of poorly-understood
requirements and rapid technology
changes push the decision away from
once-through or incremental acquisition,
while the needs for an early capability and
for user feedback on full requirements

push the decision toward evolutionary
acquisition. If the system had been a small,
lower-technology embedded system where
all capabilities are needed at first delivery,
the risk and opportunity factors would
push the decision away from evolutionary
and incremental acquisition toward once-
through or single-step acquisition.

Conclusion
This paper has defined the spiral develop-
ment model as a risk-driven process model
generator with cyclic process execution
and a set of three anchor point milestones.
The definition was sharpened by present-
ing a set of six “essential” attributes; that
is, six attributes which every spiral devel-
opment process must incorporate. These
essentials are summarized in Table 3 (See
page 10). Omission of each of these gives
rise to process models that are cyclic or
iterative, but are not examples of spiral
development. These are called “hazardous
spiral look-alikes.” Each was described and
pilloried as part of describing the Essential
it violates.

Spiral development works fairly seam-
lessly with evolutionary acquisition of
information systems. For evolutionary
acquisition of software-intensive embed-
ded hardware-software systems, a mix of
spiral and sequential processes is often
needed. Even here, however, the spiral
anchor points and risk-driven process
selection approach are useful for determin-
ing how best to synchronize the hardware
and software processes.◆

References

1.Boehm, B., A Spiral Model of Software
Development and Enhancement,
Computer, May 1988, pp. 61-72.

2.Department of Defense Instruction
5000.2, Operation of the Defense

May 2001 www.stsc.hill.af.mil 9

Table 1: Evolutionary Acquisition Distinctions [14]

Development strategy Define all
requirements first?

Multiple develop-
ment cycles?

Distribute interim
software?

Once-Through (Waterfall) Yes No No

Incremental (Preplanned
Product Improvement)

Yes Yes Maybe

Evolutionary No Yes Yes

The Spiral Model as a Tool for Evolutionary Acquisition

Table 2: Spiral Risk Analysis for Process Selection [14]

Acquisition System, September 2000,
www.acq.osd.mil/ap/i50002p.doc

3.Hansen, W.; Foreman, J.; Carney, D;
Forrester, E.; Graettinger, C.; Peterson,
W.; and Place, P., Spiral Development
Building the Culture: A Report on the
CSE-SEI Workshop, February 2000,
Software Engineering Institute,
Carnegie Mellon University, Special
Report CMU/SEI-2000-SR-006, July
2000, www/cbs/spiral2000/
february2000/finalreport.html

4.Hansen, W.; Foreman, J.; Albert, C.;
Axelband, E.; Brownsword, L.; Forrester, E. ;
and Place, P., Spiral Development and
Evolutionary Acquisition: The SEI-CSE
Workshop, September, 2000, Software
Engineering Institute, Carnegie Mellon
University, Special Report, in preparation.

5.Boehm, Barry, edited by Hansen, Wilfred J.,
Spiral Development: Experience, Principles,
and Refinements, Software Engineering
Institute, Carnegie Mellon University, Special
Report CMU/SEI-00-SR-08, ESC-SR-00-
08, June, 2000, www/cbs/ spiral2000/febru
ary2000/BoehmSR.html.

6.Carr, M. J.; Konda, S. L.; Monarch, I.;

Ulrich, F. C., and Walker, C. F.,
Taxonomy-Based Risk Identification,
Software Engineering Institute, Carnegie
Mellon University, Technical Report
CMU/SEI-93-TR-6, ESC-TR-93-183,
June,1993,www.sei.cmu.edu/legacy/
risk/kit/tr06.93.pdf

7. Williams, R. C.; Pandelios, G. J.; and
Behrens, S.G., Software Risk
Evaluation (SRE) Method Description
(Version 2.0), Software Engineering
Institute, Carnegie Mellon University,
Technical Report CMU/SEI-99-TR-
029, ESC-TR-99-029, December,
1999, www.sei.cmu.edu/pub/docu
ments/99.reports/pdf/99tr029
body.pdf

8. Boehm, B., Unifying Software Engineering
and Systems Engineering, IEEE Computer,
March 2000, pp. 114-116.

9. Boehm, B., Software Risk Management,
IEEE Computer Society Press, 1989.

10.Mehta, N., MBASE Electronic Process
Guide, USC-CSE, Los Angeles, Calif.,
October 1999, sunset.usc.edu/research/
MBASE/EPG

11.Boehm, B., Software Engineering Economics,

New York, N.Y., Prentice Hall, 1981.
12.Hantos, P., From Spiral to Anchored

Processes: A Wild Ride in Lifecycle Building
architecture, Proceedings, USC-SEI Spiral
Experience Workshop, Los Angeles, Calif.,
Febuary 2000, www.sei.cmu.edu/cbs/spi
ral2000/Hantos

13.Rechtin, E., and Maier, M., The Art of
Systems Architecting, CRC Press, 1997.

14.IEEE and EIA, Industry Implementation of
ISO/IEC 12207: Software Life Cycle
Processes-Implementation Considerations,
IEEE/EIA 12207.2 - 1997, April 1998.

Article Web Site Location
http://www.se i .cmu.edu/pub/docu
ments/00.reports/pdf/00sr008.pdf

10 C R O S STA L K The Journal of Defense Software Engineering May 2001

Best Practices

Table 3: Summary

“It is impossible to make a program
foolproof because fools are so

ingenious.”
Anonymous

Software Technology Support Center
wwwwww..ssttsscc..hhiillll..aaff..mmiill

The Software Technology Support Center (STSC) was estab-
lished in 1987 as the command focus for proactive application
of software technology in weapon, command and control, intel-
ligence, and mission-critical systems. The STSC provides hands-
on assistance in adopting effective technologies for software-
intensive systems. It helps organizations identify, evaluate, and
adopt technologies that improve software product quality, pro-
duction efficiency, and predictability. STSC uses the term tech-
nology in its broadest sense to include processes, methods, tech-
niques, and tools that enhance human capability. Its focus is on
field-proven technologies that will benefit the Department of
Defense mission.

Software Engineering Institute

wwwwww..sseeii..ccmmuu..eedduu

The Software Engineering Institute (SEI) is a federally funded
research and development center sponsored by the Department
of Defense to provide leadership in advancing the state of the
practice of software engineering to improve the quality of systems
that depend on software. SEI helps organizations and individuals
to improve their software engineering management practices. The
site features a software engineering management practices work
area that focuses on the ability of organizations to predict and
control quality, schedule, cost, cycle time, and productivity when
acquiring, building, or enhancing software systems.

Data & Analysis Center for Software
wwwwww..ddaaccss..ddttiicc..mmiill

The Data and Analysis Center for Software (DACS) is a
Department of Defense (DoD) Information Analysis Center. The
DACS is the DoD software information clearinghouse serving as
an authoritative source for state of the art software information
and providing technical support to the software community. The
center’s technical area of focus is software technology and soft-
ware engineering, in its broadest sense. The DACS offers a wide
variety of technical services designed to support the development,
testing, validation, and transitioning of software engineering
technology. The DACS is technically managed by the Air Force
Research Laboratory - Information Directorate.

The Institute of Electrical and

Electronics Engineers
wwwwww..iieeeeee..oorrgg

The Institute of Electrical and Electronics Engineers, Inc.
(IEEE), helps advance global prosperity by promoting the engi-
neering process of creating, developing, integrating, sharing, and
applying knowledge about electrical and information technolo-
gies and sciences for the benefit of humanity and the profession.
The IEEE is a nonprofit, technical professional association of
more than 350,000 individual members in 150 countries.
Through its members, the IEEE is a leading authority in techni-
cal areas ranging from computer engineering, biomedical tech-
nology and telecommunications, to electric power, aerospace and
consumer electronics, among others.

Software Productivity Consortium

wwwwww..ssooffttwwaarree..oorrgg

The Software Productivity Consortium is a unique, nonprofit
partnership of industry, government, and academia. It develops
processes, methods, tools, and supporting services to help mem-
bers and affiliates build high-quality, component-based systems,
and continuously advance their systems and software engineering
maturity pursuant to the guidelines of all of the major process
and quality frameworks. The site features an interactive section to
discuss new trends.

About the Authors

BBaarrrryy BBooeehhmm,, Ph.D., is the TRW professor of soft-
ware engineering and director of the Center for
Software Engineering at the University of Southern
California. He was previously in technical and man-
agement positions at General Dynamics, Rand
Corp., TRW, and the Office of the Secretary of

Defense as the director of Defense Research and Engineering
Software and Computer Technology Office. Boehm orginiated the
spiral model, the Constructive Cost Model, and the stakeholder
win-win approach to software management and requirements nego-
tiation.

UUnniivveerrssiittyy ooff SSoouutthheerrnn CCaalliiffoorrnniiaa
CCeenntteerr ffoorr SSooffttwwaarree EEnnggiinneeeerriinngg
LLooss AAnnggeelleess,, CCAA 9900008899--00778811
VVooiiccee:: 221133--774400--88116633
FFaaxx:: 221133--774400--44992277
EE--mmaaiill:: bbooeehhmm@@ssuunnsseett..uusscc..eedduu

WWiillffrreedd JJ..HHaannsseenn has been consulting on the tools and processes
for utilizing commercial-off-the-shelf (COTS) software within larg-
er systems at the Software Engineering Institute. Previously he was
director of the Andrew Consortium where he led the development
and maintenance of the Andrew User Interface System, which was
the first modern word-processor in that it originated the embed-
ding of arbitrary objects into text and into other objects. One of his
contributions to Andrew was a scripting language having a unique
integer-free sub-language for processing strings. Earlier in his career,
Hansen taught data structures and programming languages.

SSooffttwwaarree EEnnggiinneeeerriinngg IInnssttiittuuttee
44550000 FFiifftthh AAvveennuuee
PPiittttssbbuurrgghh,, PPAA 1155221133--33889900
VVooiiccee:: 441122--226688--88224477
EE--mmaaiill:: wwjjhh@@sseeii..ccmmuu..eedduu

May 2001 www.stsc.hill.af.mil 11

The Spiral Model as a Tool for Evolutionary Acquisition

W e b s i t e s

NASA is recognized as a leader in space
technology, using cutting-edge sci-

ence to probe galaxies never before seen by
mankind. In keeping with this cutting-
edge technology, much of the functionali-
ty previously done through hardware has
transferred to software, including mission
critical functions. But technology imple-
mentation is moving so fast, that at times
quality assurance cannot keep up,
although we try. The NASA Independent
Verification and Validation (IV&V)
Facility was established in 1993 in West
Virginia and tasked to support NASA
projects in achieving the highest levels of
safety and cost effectiveness for mission-
critical software. Despite this, NASA has
experienced some failures recently that
were traced, in part, to less than adequate
implementation of mission software.

NASA determined the need for soft-
ware IV&V after evaluating the causes of
recent mission failures. These were due, in
part, to software issues that should have
been identified during development or
testing. The NASA IV&V Facility was
developed to be a center of excellence, but
was underutilized. Projects that did use the
facility had proven benefits. Thus NASA’s
focus for improvement includes increased
software IV&V application.

NASA began by looking at available
resources and projects that had applied
IV&V to determine the benefits in the
NASA environment. It was quickly deter-
mined that only a few projects were imple-
menting IV&V; not all were taking advan-
tage of the facility’s expertise. There were
very definite proven benefits to NASA
when IV&V was applied. These ranged
from cost savings to identifying mission
critical errors not previously identified
through testing. Applying IV&V on this
software resulted in increased safety and
mission reliability. However, an identified
deficiency was that there was no consistent
application of IV&V by the projects.

This paper discusses the approach

taken to increase the use of IV&V within
NASA. We will start by defining inde-
pendent, verification, and validation. We
will then discuss the written policy relative
to the performance of software IV&V, and
the criteria developed to help projects
quantify the need for IV&V.

Independent Verification

and Validation

A basic understanding of what constitutes
IV&V begins with the definitions of veri-
fication and validation, then determines
what is required for “I” – independence.
The Institute of Electrical and Electronics
Engineers (IEEE) 610.12-1990, Standard
Glossary of Software Engineering
Terminology, defines verification and vali-
dation [1]. Verification is defined as the
process of evaluating a system or compo-
nent to determine whether the products of
a given development phase satisfy the con-
ditions imposed at the start of that phase.
Validation is defined as the process of
evaluating a system or component during
or at the end of the development process
to determine whether it satisfies specified
requirements. Verification asks “Did we
build the system right?” and validation
asks “Did we build the right system?”

IEEE defines independence in IV&V as
three parameters: technical independence,
managerial independence, and financial
independence. Personnel who are not
involved in software development achieve
technical independence. IV&V personnel
use their expertise to assess development
processes and products independent of the
developer. They formulate their own
understanding of potential problems and
how the proposed system is solving them.

Managerial independence requires
responsibility for the IV&V effort to be
vested in an organization separate from
the organization responsible for perform-
ing the system implementation. The
IV&V effort independently selects the seg-

ments of the software and system to ana-
lyze and test, chooses the IV&V tech-
niques, defines the schedule of IV&V
activities, and selects the specific technical
issues and problems to act upon. Most
projects view V&V as sufficient and do
not recognize the added value the inde-
pendence brings.

Financial independence has been
harder to attain. All work on the project,
including quality assurance, is funded
directly by the project; hence, IV&V is
also funded directly by the project. In the-
ory, the project team could remove IV&V
funding if they are not satisfied with the
findings. But with the implementation of
the IV&V policy, projects are now
required to work with the IV&V Facility
to reach an agreement on the amount of
IV&V and funding. The center director
must agree to any changes to this along
with strong justification by the project
manager.

Implementation Approach

All software project managers, whether
government or industry, never have time
or money to spare, so when NASA identi-
fied the need for IV&V, it was met with a
cry of, “Not on my project!” But the
implementation of IV&V was part of a
larger effort to improve the software devel-
oped at NASA, to achieve the highest lev-
els of safety and cost effectiveness possible
for mission critical software. The NASA
IV&V Facility provides tailored technical,
project management and financial analysis
for NASA projects, industry, and other
government agencies, by applying software
engineering “best practices” to evaluate
software risk and criticality throughout the
system development life cycle. Through
the facility, NASA has the means for
implementing IV&V, but it is under uti-
lized. Only a few very large NASA proj-
ects, such as Space Station, chose to apply
IV&V through the facility.

Verification and Validation Implementation at NASA
Dr. Linda H. Rosenberg

NASA, Goddard Space Flight Center

Any company that produces or relies on software knows the importance of high quality and reliability. Recently NASA
focused on applying Independent Verification and Validation (IV&V) as part of a software improvement effort. This paper
is not about IV&V, but about NASA’s new IV&V implementation approach on all software development throughout the
agency. This information is valuable to any project, organization, or company considering applying IV&V.

12 CR O S S TA L K The Journal of Defense Software Engineering May 2001

DDrr.. LLiinnddaa HH.. RRoosseennbbeerrgg wwiillll pprreesseenntt oonn MMaayy 22 -- TTrraacckk 1100

To change this, the first step was to
write a policy requiring projects to investi-
gate the necessity of doing IV&V. It is an
effective risk mitigation strategy, and since
most NASA missions are cutting edge
technology, they also are at high risk.
Recognizing that cost must be balanced
against potential benefits, the “amount” of
risk incurred by a project had to be
assessed. A policy was developed that
included the process of determining the
need for IV&V, the extent, and approach.
The policy also states all IV&V will be
done under the management of the NASA
IV&V Facility, centralizing expertise and
ensuring consistency.

The next step was to develop criteria
determining when to consider IV&V.
This required quantifying project risk for
an initial assessment on which projects
may require IV&V. Project risk is defined
as a combination of the probability that an
undesirable event will occur, and the con-
sequence if the event does occur. The
IV&V criteria were written using proba-
bility and consequence. Factors influenc-
ing software development were identified,
and risk factors associated with them
for a calculation of the probability.
Consequences of failure were classified as
Grave, Substantial, Marginal, and
Insignificant. These are combined for a
determination of the necessity of IV&V.

The final step, and the hardest in some
respects, was to identify the projects that
potentially required IV&V and to deter-
mine to what level IV&V was needed.
Money is always an issue; there is never
enough in any software development. So
what was the cost, and what are the bal-
ancing benefits?

The approach to implement IV&V
consistently and logically on all NASA
software was broken into three steps:
1.Write a policy for the requirement of

IV&V implementation.
2.Write the criteria for an initial determi-

nation of IV&V necessity.
3.Work with projects to implement

IV&V.

Step 1: IV&V Implementation
Policy
The policy was to clearly specify the
process of determining when a program
must apply IV&V under the management

of the NASA IV&V Facility. One strength
of the policy is the specification that the
NASA IV&V Facility is responsible for the
management of all software IV&V efforts
within the agency. This creates a central
repository of knowledge, tools, metrics,
and lessons learned that can be used to
improve the IV&V efforts on future proj-
ects throughout NASA.

The policy states that each project
must produce, document, and implement
a plan that addresses V&V performance;
and if appropriate, IV&V through the
software life cycle – from requirements
through delivery and maintenance. The
level of IV&V of software that is per-
formed is based on the cost, size, complex-
ity, life span, risk, and consequences of
failure as defined using the criteria
explained in the following section.

Step 2: IV&V Criteria

In order to accomplish the goal to increase
the application of IV&V on all appropri-
ate projects, it had to be determined what
was meant by “appropriate” projects,
hence the development of IV&V criteria.
Looking back on the IV&V objective for
risk mitigation, those projects with high
risk had to be identified; but first, the cri-
teria for what makes a software project
high risk had to be defined and quantified.
The quantification was the hardest part.

IV&V is intended to assist mitigating
risk, hence the decision to do IV&V must
be risk-based. NASA policy defines risk as
the “combination of 1) the probability
(qualitative or quantitative) that a pro-
gram or project will experience an unde-
sired event such as cost overrun, schedule
slippage, safety mishap, or failure to
achieve a needed breakthrough; and 2) the
consequences, impact, or severity of the
undesired event were it to occur [3].” The
likelihood of occurrence and consequences
of a given software failure cannot be calcu-
lated early in the software life cycle.
However, there are realistic metrics avail-
able that give good general approxima-
tions of the consequences as well as the
likelihood of failures.
Probability Evaluation

The probability of failure for software is
difficult to determine at any phase in the
software development life cycle. NASA has
identified factors that impact development

difficulty. These factors were then calibrat-
ed to determine the extent of risk for suc-
cessful software development. While the
indicators are not precise and are current-
ly in Beta testing by NASA software devel-
opment projects and the IV&V determi-
nation team, they are available to provide
estimates that are adequate for assessing
IV&V need.1 There are nine factors: soft-
ware team complexity, contractor support,
organization complexity, schedule pres-
sure, process maturity of software
provider, degree of innovation, level of
integration, requirement maturity, and
software lines of code.

Five risk categories within each factor
were identified based on input from soft-
ware developers from all NASA centers.
Values 1, 2, 4, 8, and 16 were assigned to
each category. Finally, a weighting factor
of 1 or 2 was identified for each factor.
This information is shown in Table 1

To apply the criteria, the project man-
ager identifies the category of risk for each
factor and multiplies the appropriate value
(1, 2, 4, 8, or 16) times the weighting fac-
tor of 1 or 2. The sum for all factors yields
an initial numerical representation of the
project software development risk. For
example, a project might rate the follow-
ing:
• Software team complexity –
“up to 20 people at one location” =
4 * 2 = 8

• Contractor support –
“with minor tasks” = 2 * 2 = 4

• Organizational complexity –
“two locations but with same reporting
chain” = 2 * 1 = 2

• Schedule pressure –
“non-negotiable” = 16 * 2 = 32

• Process maturity –
“ CMM Level 1 but with a successful
history” = 8 * 2 = 16

• Innovation –
“between proven but new and cutting
edge” = 8 * 1 = 8

• Integration –
“almost stand alone” = 2 * 2 = 4

•Requirement maturity –
“preliminary objectives” = 8 * 2 = 16

• Lines of code –
“~ 300K” = 2 * 2 = 4

• TOTAL = 8+4+2+32+16+8+4 +
16+4= 94

This risk information must now be com-
bined with the consequence evaluation.

Verification and Validation Implementation at NASA

May 2001 www.stsc.hill.af.mil 13

Consequence Evaluation

In general, the consequences of a software
failure can be derived from the purpose of
the software: i.e., what does the software
control; what do we depend on it to do?
NASA has many types of software, includ-
ing flight software that is launched and
contains mission critical functionality,
ground system software that sends com-
mands, scientific software for the experi-
ments, and just about all other types of
software imaginable. There are factors that
can be used to categorize software based
on its intended function as well as the level
of effort expended to produce it: potential
for loss of life, potential for serious injury,
potential for catastrophic mission failure,
potential for partial mission failure, poten-
tial for loss of equipment, potential for
waste of software resource investment,
potential for adverse visibility, and poten-
tial effect on routine operations.

Now the potential for failure had to be
quantified. Four ratings were chosen:
Grave, Substantial, Marginal and
Insignificant. Each of the factors above
were quantified for each rating. If any of
the conditions are met, the software is
considered to reside in that category. For
example, the category Grave is defined as
follows:

• Potential for loss of life - Yes.
• Potential for loss of equipment – Greater

than $100,000,000.
• Potential for waste of resource invest-

ment – Greater than 200 work years on
software.

• Potential for adverse visibility – Inter-
national.

Combining the results of the “likeli-
hood of failure rating” and the “conse-
quences of failure” yields a risk assessment
that can be used to identify the need for
IV&V. Applying these criteria only deter-
mines that a project is an IV&V candidate
– not the level of IV&V nor the resources
associated with the IV&V effort. These

must be determined as a result of discus-
sions between the project and the IV&V
Facility. Figure 1 shows a dark region of
high risk where software consequences,
likelihood of failure, or both are high.
Projects having software that falls into this
high-risk area shall undergo IV&V. The
exception is those projects that have
already done hardware/software integra-
tion. An IV&V would not be productive
that late in the development cycle. The
gray regions represent projects with inter-
mediate risk. Projects having software that
falls into these areas shall undergo an eval-
uation to determine if IV&V is warranted.
Using the previous project example, a
probability of 94 score means that they
must perform IV&V if the consequence of
failure is Substantial or Grave. Since the
project’s consequence was determined to
be Grave, they must perform IV&V under
the NASA IV&V Facility.

Step 3: Project

Implementation
Prior to implementing IV&V, a company
has to know about the software it devel-
ops. At NASA, software development is
done at all 10 centers spread from
California to Florida, Texas to Ohio, and
Alabama to Maryland, and with universi-
ties and industries. In total, criteria data
were received on approximately 100 proj-
ects. After discussions with projects to
clarify the information and correct erro-
neous data, approximately 70 projects
were identified as IV&V candidates.

Applying IV&V to 70 projects imme-
diately, however, is impossible. The facility
currently does not have the resources to
accommodate this many projects and this

Table 1: Likelihood of Failure Based on Software Environment (* indicates additional information is also required)

Figure 1: Pre-Ship Test Risk Exposure

14 CR O S S TA L K The Journal of Defense Software Engineering May 2001

Best Practices

much work at this time. Using the data
from the criteria (consequence and proba-
bility) and discussions with the project
managers, the following guidelines to
focus the IV&V efforts were implement-
ed:
• All projects currently receiving IV&V

will continue.
• All projects classified Grave should be

addressed first for IV&V with the high-
est priority applied to those closest to
operational date as a general rule, with
some attention applied to why it is clas-
sified as Grave.

• All projects classified as Substantial and
needing IV&V based on the risk proba-
bility value greater than 32 that are in
the requirements or design phase.

• All remaining projects classified as
Substantial and needing IV&V based
on the risk probability value greater
than 32.

• All remaining projects classified as
Marginal and needing IV&V based on
the risk probability value greater than
96, prioritized based upon how close to
starting they are.

Results

Applying IV&V on NASA projects has
shown some very positive results and pre-
vented costly errors. In one project, the
IV&V activity identified design flaws in
the command-and-control system that, if
not corrected, would have resulted in a
catastrophic hazard. This critical piece of
software sends commands to hardware ele-
ments, and if not working properly, could
fail to send emergency response com-
mands leading to the loss of attitude con-
trol, rapid depressurization, and other haz-
ardous conditions. Using a code analysis,
IV&V identified an error that would elim-
inate the vital command link between the
ground control system and the satellite. A
special software patch was generated for
the on-orbit software to correct the prob-
lem. IV&V developed policy criteria used
by one program for non-flight software in
integrated tests. This policy was key for
insuring testing integrity while making it
possible to keep tight development sched-
ules. IV&V activities have benefited many
different domains of NASA’s software. In
the manned-space flight domain, more
than 4,000 problems were identified, 10

of the highest criticality, those that could
result in loss of mission or loss of life. For
experimental flight vehicles, IV&V identi-
fied more than 300 requirements and
design problems. For ground systems,
more than 250 legacy system requirements
and mitigation problems were identi-
fied.These are just some of the benefits
NASA has reaped from the formally
applying IV&V. We currently are working
on the return-on-investment calculations
for these activities.

Conclusion

The results of NASA’s investigation have
shown that in this environment, IV&V
has been cost effective. Companies large
and small, in today’s competitive world
cannot afford software that is unreliable.
To be effective, however, IV&V must be
applied effectively, and the independence
must not be lost. Project managers must
understand the benefits above the cost,
looking at the whole development, not
just the current state.

NASA has recognized the value of
IV&V and has taken steps to implement
IV&V on all software projects where war-
ranted. The decision to implement IV&V
is no longer solely the decision of the proj-
ect manager, but through an independent
evaluation, the risk of the project is evalu-
ated, and the need for IV&V is deter-
mined. Although the policy and criteria in
this paper were written for NASA projects,
they are applicable with minor modifica-
tion to any software development.◆

Acknowledgements

Much of the work presented in this paper
was a combined effort of NASA IV&V
Facility personnel (Judy Bruner, John
Hinkle, and Ken McGill), Goddard Space
Flight Center personnel (Charles Vanek,
John Dalton, Linda Rosenberg), and the
members of the Software Working Group
under Pat Schuller, Langley Research
Center.

References

1.IEEE 610.12-1990, IEEE Standard
Glossary of Software Engineering
Terminology, Institute of Electrical and
Electronics Engineers, Inc.

2.NASA IV&V Business Plan, Office of

System Safety and Mission Assurance,
NASA Goddard Space Flight Center,
MD , June 2000, ivvplan.gsfc.nasa.gov

3.NASA Policy Guideline (NPG) 7120.5,
NASA Program and Project Management
Processes and Requirements Highlight Code,
Office of Chief Engineer, NASA
Headquarters, Washington, DC.

Note

1.Initial beta testing results indicate that
some values and weights need to be
adjusted. This will be done in the next
release this year.

About the Author
LLiinnddaa RRoosseennbbeerrgg,, Ph.D.,
serves as the chief scien-
tist for Software Assur
ance at NASA’s Goddard
Space Flight Center, and
is the former division

chief of the Software Assurance
Technology Office (SATO). Dr.
Rosenberg is a recognized international
expert in the areas of software assurance,
software metrics, requirements and relia-
bility. She serves on the Institute of
Electrical and Electronics Engineers pro-
gram committees for software reliability,
software metrics, and software require-
ments. She is also an adjunct professor at
the University of Maryland, Baltimore.
Dr. Rosenberg holds a Ph.D. in comput-
er science from the University of
Maryland, a M.E.S. in computer science,
and a batchelor’s in mathematics.

SSooffttwwaarree AAssssuurraannccee TTeecchhnnoollooggyy OOffffiiccee,,
CCooddee 330044
GGooddddaarrdd SSppaaccee FFlliigghhtt CCeenntteerr,, NNAASSAA
GGrreeeennbbeelltt,, MMDD 2200777711 UUSSAA
VVooiiccee:: 330011--228866--00008877
FFaaxx:: 330011--228866--11666677
EE--mmaaiill:: LLiinnddaa..RRoosseennbbeerrgg@@ggssffcc..nnaassaa..ggoovv

“Computers can figure out all kinds

of problems, except the things in the

world that just don’t add up.”

James Magary

“When we write programs that

learn, it turns out that we do

and they don’t.”

Alan J. Perlis

May 2001 www.stsc.hill.af.mil 15

Verification and Validation Implementation at NASA

To ensure that technology would be
accessible to individuals with disabili-

ties, Congress added Section 508 to Title
V of the Rehabilitation Act in 1986.
Under Section 508 (29 U.S.C. 794d)
agencies must give disabled employees and
members of the public access to informa-
tion that is comparable to the access avail-
able to others. The law specifically
exempted intelligence systems and mili-
tary command and control systems, but
applies to all other systems such as logistics
and administrative systems. However, lit-
tle progress toward fulfilling Section 508’s
objectives prompted the introduction of
new legislation in 1998. It establishes an
enforcement procedure to strengthen
Section 508.

There are 54 million Americans with
some level of disability. In the federal
workforce there are 167,902 employees
with reportable disabilities and 28,672
employees with targeted (significant) dis-
abilities. The real number of Americans
with disabilities is actually larger because
the 97 percent of the population born
without disabilities fail to report them to
human resources departments when they
are acquired later in life. They simply
adopt methods and processes that accom-
modate their disability to permit them to
remain productive.

Who Will Be Impacted?

The 1998 law has government-wide
impact, including contractors and will
essentially be society-wide as the electron-
ics and information technology industry
continues to make all products and servic-
es more accessible. Citizens with disabili-
ties and employees will have the right to
sue federal agencies for non-compliance
and inaccessible information in any pro-
gram area where information technology
procurements have been made after June
21, 2001.

Information technology accessibility
for persons with disabilities is a fascinating
area that encompasses multi-modality –

individuals’ ability to request and retrieve
information in the mode that is best suit-
ed and most convenient at the time. It is
really just the leading edge of features that
we all like to have as we become a more
mobile workforce. There are times when I
really need to access my e-mail by tele-
phone and have the messages read to me.
Cell phones that respond to voice com-
mands while driving are the type of capa-
bility that voice recognition systems for
the blind provide for the mass market.

Section 508 applies to all electronic
and information technology: the Web,
software and hardware, photocopy
machines, audio-video, telecommunica-
tions, and kiosks. In fiscal year 1999, the
federal government purchased $37.6 bil-
lion in information technology. It is esti-
mated that $12.4 billion of that would be
subject to Section 508. The regulatory
analysis conducted in conjunction with
the 508 final regulation estimated the
added government cost of Section 508
between $85 million and $691 million
annually. The legal requirements are clear:
“When developing, procuring, maintain-
ing, or using electronic and information
technology, each federal department or
agency, … shall ensure, unless an undue
burden would be imposed on the depart-
ment or agency, that the electronic and
information technology allows, regardless
of the type of medium of the technology:

i) individuals with disabilities who are
federal employees to have access to and
use of information and data that is com-
parable to the access to and use of the
information and data by federal
employees who are not individuals with
disabilities; and
(ii) individuals with disabilities who are
members of the public seeking informa-
tion or services from a federal depart-
ment or agency to have access to and
use of information and data that is com-
parable to the access to and use of the
information and data by such members
of the public who are not individuals

with disabilities.” The regulations for
Section 508 primarily targets software
development issues that preclude access
to information for persons with blind-
ness or low vision, deafness or difficulty
hearing, or persons with mobility or
dexterity limitations.

Keyboard Equivalents

Making information totally accessible
using keyboard commands provides the
interface for most of the special accommo-
dation devices that are used by persons
with blindness and dexterity limitations.
While this approach works well within an
application, there are development consid-
erations. Developers must consider the
entire software stack and operating envi-
ronment to ensure that keyboard com-
mands in the application software do not
conflict with commands operating
through other software layers. Accessibility
requires clear standards and consistency
for reserved keyboard commands and
function keys. The regulation requires that
applications do not disrupt or disable fea-
tures of other products that are identified
as accessibility features.

Many commercial products with
graphical user interfaces have very well
developed keyboard equivalencies to per-
form functions. However, one problem is
consistent keyboard commands, which
really is the motif or metaphor for the per-
son with blindness. If each application
randomly chooses a different set of key-
board commands for the close and exit
commands, it then places a real limit on
the number of applications a person can
learn and memorize. A good solution for
this while organizations are thinking about
standardized metaphors and motifs is to
adopt a popular set of keyboard equiva-
lents.

A second problem with keyboard
commands is that some applications have
commands that require three or four keys
to activate. While this may work fine for a
person with blindness, it will cause havoc

The Next Refinement to Software
KeithThurston

Office of Government-Wide Policy

Access for persons with disabilities has been an issue in software development for a number of years. However, the
importance and impact has reached new levels with a change in the law regarding access to federal information.

16 CR O S S TA L K The Journal of Defense Software Engineering May 2001

HHiigghhlliigghhtteedd iinn aann AApprriill 3300 ttuuttoorriiaall aanndd oonn MMaayy 11 -- TTrraacckk 88Software Engineering Technology

for people with dexterity limitations. To
accommodate the four-key command,
they may have to slow the activation speed
of their accessibility so much that typing
text would be torturous or impossible.

Lastly, keyboard command applica-
tions cannot disrupt or disable other prod-
ucts’ activated features that are identified
as accessibility features, where those fea-
tures are developed and documented
according to industry standards. Also, acti-
vated accessibility features cannot be dis-
rupted or disabled when their application-
programming interface has been docu-
mented by the manufacturer and is avail-
able to the product developer. This
becomes an issue for applications develop-
ment in selecting keyboard equivalents
and for configuration management.

User Focus
In navigating for accessibility, it is impor-
tant that a well defined on-screen icon be
provided that moves among interactive
interface elements as the input focus
changes. The icon must be programmati-
cally exposed so that assistive technology
can track focus and focus changes. Indeed,
standard screen metaphors that are nor-
malized across operations provide easy
navigation for the disabled and are helpful
to everyone learning to navigate new soft-
ware.

Be sure to make sufficient information
about a user interface element, including
the identity, operation, and state of the
element, available to assistive technology.
When images, icons, or bitmaps are used
to identify controls, status indicators, or
other software programmatic elements,
the information conveyed by the image
must also be available in text.
Furthermore, the meaning assigned to
those images needs to be consistent
throughout an application’s performance.

Textual information must be provided
through operating system functions for
displaying text. There is minimum infor-
mation that must be made available: text
content, text input caret location, and text
attributes.

Color Usage

Colors selected for user interfaces can be
an issue for people with limited sight (con-
trast) and color-blindness. Therefore

color-coding should not be used as the
only means of conveying information:
indicating an action, prompting a
response, or distinguishing a visual ele-
ment. If color is used, then another color-
neutral textual method should accompany
it. For instance, instead of directing the
user to click on the green button to com-
plete the transaction, direct the user to
click on the green “Done” button to com-
plete the transaction.

Applications should not override user-
selected contrast and color selections and
other individual display attributes. This is
important since adaptability tools for peo-
ple with poor vision allow the user to
select the high-contrast color that works
best. When a product permits a user to
adjust color and contrast settings, it pro-
vides a variety of color selections capable
of producing a range of contrast levels.

Screen Motion

When animation is displayed, the same
information should be displayable in at
least one non-animated presentation mode
for the user’s option. To prevent a type of
neurological seizure that can be initiated
by the blinking on televisions and com-
puter monitors, software should not use
flashing or blinking text, objects, or other
elements with a blink frequency greater
than 2 Hz and lower than 55 Hz.

Filling Forms

All electronic forms must allow people
using assistive technology to access the
information, field elements, and function-
ality required to complete and submit the
form, including all directions and cues.
This means that screen readers and other
devices should be able to read through the
form and the text input, and that software
and input screens can be navigated solely
by keyboard commands. Visually impaired
persons with blindness and low vision use
screen readers. Purchasing a screen reader
and testing software assures that it is acces-
sible for the blind under Section 508
requirements. Of the screen readers avail-
able, two have emerged as clear market
leaders, and both are used by federal
employees: JAWS for Windows by
Henter-Joyce, a division of Freedom
Scientific, and Window-Eyes by GW
Micro Inc.

Functional Performance

Requirements
The regulatory standard also includes
some functional performance require-
ments that software and system must
address. At least one mode of operation
and information retrieval that does not
require user vision must be provided, or
blind or visually impaired people must be
given assistive technology. Providing key-
board equivalents and being screen-reader
compatible for the text-oriented software
meets this requirement. Remember that if
diagrams, graphics or video clips are used
text and/or audio equivalents must be
available, too.

At least one mode of operation and
information retrieval that does not require
visual acuity greater than 20/70 shall be
provided in audio and enlarged print out-
put working together or independently, or
support for assistive technology used by
people who are visually impaired must be
available.

For those that are deaf or hard of hear-
ing, at least one mode of operation and
information retrieval that does not require
user hearing is to be provided, or support
for assistive technology must be provided.
It is important to remember this when
including gongs or other sounds to alert
for input errors or process errors. A visual
equivalent should also be displayed. One
similar frequent problem area in commer-
cial software is that the blind user may
know that a pop-up error messages has
occurred, but the screen reader can not
read the error message because the pop-up
is an image and not text.

For the hard of hearing, where audio
information is important for the use of a
product, at least one mode of operation
and information retrieval shall be provided
in an enhanced auditory fashion, or sup-
port for assistive hearing devices shall be
provided. And likewise, for those with
problems speaking, at least one mode of
operation and information retrieval that
does not require user speech must be pro-
vided

Lastly for those dexterity problems, at
least one mode of operation and informa-
tion retrieval that does not require fine
motor control or simultaneous actions and
that is operable with limited reach and
strength must be provided. People that

The Next Refinement to Software

May 2001 www.stsc.hill.af.mil 17

have special adaptive appliances usually
can plug those into a keyboard interface so
the keyboard equivalents go a long way
towards meeting this requirement on stan-
dard desktop PCs and terminals.

Other Parts of the

Requirements

This article discusses the software develop-
ment requirements of the Section 508 reg-
ulations. The regulations also has specific
sections:
• Web-based information and operations.
• Telecommunications products.
• Video and multimedia products.
• Self-contained, closed products.
• Desk-top and portable computers.
• Information documentation and

support.
The entire regulation and further informa-
tion are available at www.section508.gov

The requirements of Section 508 are
to be met in all systems (unless otherwise
exempted), and to be available to all users,
not as customizations for just those specif-

ic users with disabilities. The idea is that
the information should become universal-
ly accessible. While this may appear to be
add-on requirements now, I believe that it
will become normal for all software to
offer multi-modal access so that it can be
used under many different conditions by
anyone. Our challenge is to build these
requirements into our software and sys-
tems development procedures and meth-
ods to begin getting the benefits or univer-
sal access.

Status of Implementation

The regulatory standards were issued in
December 2000, so the 508 regulation
takes effect by June 21, 2001. For pur-
chased items, the Federal Acquisition
Regulations are being modified. The
industry and government agency officials
in information technology, procurement,
human resources, and technology are
being briefed. Additional information on
policies is also available at www.sec-
tion508.gov ◆

Software Engineering Technology

About the Author

KKeeiitthh TThhuurrssttoonn is assistant to the deputy associate administrator in the
Office of Information Technology, part of the Office of Government-
Wide Policy at the U.S. General Service Administration. He works with
a number of government-wide initiatives and groups to help formulate
technology guidance, direction, and policy. He has worked with the
Federal CIO Council since its inception in 1996 and focuses on the new

policy issues as the technology evolves. Federal IT Accessibility Initiative implementing
Section 508 Government-wide is the latest focus area for his office. Formerly Thurston
was with U.S. Treasury and IRS working in technology and network communications
for 14 years. He has a bachelor’s in business and a master’s of business administration
in telecommunications.

11880000 FF SSttrreeeett NNWW,, RRoooomm 22223399
WWaasshhiinnggttoonn,, DDCC
VVooiiccee:: 220022--550011--33117755
FFaaxx:: 220022--550011--22448822
EE--mmaaiill:: kkeeiitthh..tthhuurrssttoonn@@ggssaa..ggoovv

Get Your C RO S STA L K

Free Subscription

Fill out and send us this form.

OO-ALC/TISE

7278 Fourth Street

Hill AFB, UT 84056

Fax: 801-777-8069 DSN: 777-8069

Voice: 801-775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

N A M E:______________________________

R A N K/ GR A D E:______________________

P OSITION/ TITLE:_____________________

O RGANIZATION:______________________

A D D R E S S:___________________________

B A S E/ CITY:_________________________

STATE:______ ZIP:____________

V OICE: ______________________

FA X:__________________________

E-MAIL: _____________@______________

C H E C K B O X(E S) T O REQUEST B A C K ISSUES:

JU L 2 0 0 0____ CMMI

A U G 2000____ PR O C E S S IM P R O V E M E N T

S E P 2 0 0 0____ COTS

O C T 2000____ NE T W O R K SECURITY

N O V 2000____ SO F T W A R E A CQUISITION

D E C 2000____ PRO J E C T M A N A G E M E N T

JA N 2 001____ MODELING/ SIMULATION

F E B 2 001____ ME A S U R E M E N T

M A R 2 001____ PROCESSIM P R O V E M E N T

18 C R O S STA L K The Journal of Defense Software Engineering May 2001

“I didn’t want to pay to use somebody else’s computer,
so I decided to design my own.”

Stephen Wozniak

“The internet is the world’s largest library.
It’s just that all the books are on the floor.”

John Allen Paulos

“People in charge are the last
to know when things go wrong.”

Alan J. Perlis

For the past two years Oracle has been
changing its internal technology to

streamline redundant communications
and improve integration among core busi-
ness systems. Following the desktop appli-
cation revolution where spreadsheet data
integrate easily into a word processing pro-
gram or a slide presentation, Oracle has
taken this same approach into its business
applications. This required taking a hard
look at its e-mail system, network struc-
ture, and use of Internet-based applica-
tions.

Initially, the company spent time
scratching its head evaluating its current
systems. In 43 data centers, Oracle had 70
different computer systems and 70 data-
bases in 70 different countries in a client-
server environment with some 40,000
desktops[1]. Its purchasing system could
not identify the best suppliers by price,
quality, and other metrics. The same was
true for human resources and sales data.

On top of the lack of communication
among similar and redundant business
systems, a lack of integration among the
core business systems themselves severely
compounded the issue. These core busi-
ness systems were a patchwork of pro-
grams from different vendors. This meant
spending a tremendous amount of con-
sulting dollars to make them talk, let alone
the internal resources required to run the
individual systems. Oracle’s revelation was
that at best it was not practical and at
worst, it probably was not possible to
make all these systems work together.

To change its technology in a way that
would bring dramatic margin improve-
ments, the company determined it would
need to build a global system and defrag-
ment data. To keep up with the times,
Oracle had to change how it ran its own
business and it had to change its own
products. The first tool Oracle incorporat-
ed to bring it all together was the Internet.
This architecture provided a low-cost form

of global communication that allowed the
company to centralize network complexity
and still distribute information world-
wide. Oracle rewrote its databases and
software-development tools to run in a
three-tier Internet environment. The com-
pany rewrote its applications products too.
Finally, Oracle implemented the technolo-
gy internally.

After committing to an Internet envi-
ronment, Oracle consolidated its Wide
Area Network. Information technology
(IT) personnel reduced the 43 worldwide
data centers to two. One is located at its
headquarters, in Redwood Shores, Calif.
The backup is in Colorado Springs, Colo.
Oracle has one global database for each
major business function, such as sales and
accounting.

Some of the tangible results from the
centralization effort included 250 fewer
IT staffers, 2,000 fewer servers, an 80 per-
cent reduction in leased space for comput-
er operations, and an overall estimated
$200 million savings in IT costs for fiscal
year 2000. Oracle is anticipating keeping
total IT spending down to $300 million,
which is half the amount spent in 1999.
While the end results are more than worth
the efforts, making it actually happen took
both tough decision making and internal
selling.

Global E-Mail Consolidation

While centralization, globalization, and
consolidation plans were going on behind
the scenes, Oracle needed to visibly
demonstrate proof to employees and to
resistant individual data owners that
change was a good thing. Since e-mail per-
formance would be highly visible, the
company consolidated all of its e-mail sys-
tems. While this better and cheaper
change was easy to sell, actually making it
happen was challenging.

Oracle employees have many roles.
Thousands of employees who use UNIX

machines prefer certain e-mail clients.
The Oracle sales force lives on laptops and
prefers different e-mail clients. Some
employees telecommute and access their e-
mail using one client at work and another
at home. The Oracle Data Center requires
support for an industry standard e-mail
interface that allows employees to use the
client most appropriate to their jobs. Use
of industry standard e-mail clients also
avoids incurring additional costs to build
and maintain custom clients to access mes-
sages.

Prior to the transformation, Oracle’s
worldwide e-mail “system” was an amal-
gam of 120 message stores, 50 data cen-
ters, and 97 mail servers supporting
33,000 user accounts on multiple plat-
forms (See Figure 1, page 20) [2, 3].
Efficiency and reliability suffered from the
large number of potential points of failure
in the architecture as well as from recur-
ring interoperability challenges. The com-
pany’s existing messaging system actually
consisted of many smaller systems. Not all
servers ran the same versions of messaging
software, not all servers were on the same
platform, and the servers themselves were
geographically scattered. There were 120
message stores worldwide. The system
required 60 administrators because there
were multiple systems all over the world.
Furthermore, the Oracle system did not
consist of a single domain (e.g.
oracle.com), but sub-domains of
oracle.com based on country (e.g. us.ora-
cle.com). The result was an existing system
that was inefficient to administer and cost-
ly to maintain.

Oracle’s IT department decided to
consolidate the various subsystems into
one company-wide messaging system.
While this reduced the amount of hard-
ware, running a company-wide, enterprise
messaging system on a minimum number
of servers required software designed for
that environment. IT researched available

Streamlining Brings Oracle Big Savings, Better Service
Steven R. Perkins

Oracle U.S. Federal Government and U.S. Financial Services

The question Oracle asked itself was—once Oracle became an e-business, would it realize enough margin improve-
ment to save a billion dollars? The answer turned out to be no. The company was going to save a lot more. This
article covers some of the major internal changes Oracle made involving e-mail globalization, network consolida-
tion, and running integrated internet-based applications. Oracle’s experience translated into significant cost savings,
but more importantly, better customer service and improved commercial products.

May 2001 www.stsc.hill.af.mil 19

SStteevveenn RR.. PPeerrkkiinnss iiss aa pplleennaarryy ssppeeaakkeerr oonn MMaayy 22

software and determined to install an
Oracle Email Server (OES) middle tier
with Oracle8i databases as message stores,
and have all employees use an Internet
Message Access Protocol version 4
(IMAP4) Internet browser as an email
client. The new system would allow the
use of standard e-mail clients and enhance
performance.

Among its desired qualities, OES is a
highly scalable, open standards-based
solution for very large corporate and
Internet service provider customers. It
allows users to easily access messages using
any IMAP4- or Post Office Protocol ver-
sion 3 (POP3)-compliant client. Its
deployment cost per user is reduced
because it increases the number of concur-
rent users that can be supported on the
same machine. These qualities allowed the
company to meet its goals: minimum
hardware, simple deployment, and low
cost of administration.

The money Oracle saved through less
hardware investment could be used to
purchase more powerful machines where
needed in the system. The system is then
able to support a larger user population
because the servers are used around the
clock. Administration demands also drop.
The new messaging system only requires
administration for four message stores on
two machines at one physical location (See
Figure 2). Administration is also only
required for a single release of software on
a single technology stack, easing the task
considerably. System changes can be
made more quickly. Administrators are
able to simultaneously manage any of the

system’s component hosts, such as message
stores and IMAP servers, from any point
on the network.

The new system serves all the employ-
ees different needs. All messages can be
controlled and administered in a central
place to avoid synchronization problems.
Employees who telecommute see the same

inbox on their work systems as they do on
their home systems. Furthermore,
employees have the flexibility to change
messaging clients when necessary.

Another benefit of Oracle’s new con-
solidated messaging system is a global
lightweight directory access protocol
(LDAP) directory service. OES works
with any directory that is compliant with
the LDAP standard. This means that any
LDAP-based client can access information
in the directory, and directory information
can be easily synchronized with any other
LDAP-compliant directory. The LDAP
product Oracle uses contains two nodes in
the data center that each contains employ-
ee information. The directory data can be
updated on either node. Employee search-
es are also easier. Users no longer need to
look up employees by country, but just by
name in a single worldwide directory.
Misaddressed e-mails are corrected imme-
diately; no message is bounced. Multiple
languages are also supported, meaning
employees in more than 96 countries
around the world can use standards-based

20 CR O S S TA L K The Journal of Defense Software Engineering May 2001

Figure 1: Historical Oracle Messaging Domain Tree and Nodes

Figure 2: Architecture of New Oracle Single Instance Messaging System

Software Engineering Technology

clients to access e-mail in their native lan-
guages.

The Oracle messaging system is a
three-tiered architecture that can grow
with a continually growing user popula-
tion and mail storage needs (See Figure 3).
To provide fault tolerance, the messaging
servers containing the data would be high
availability clusters with hot backups in a
different geographic location. The messag-
ing workload is partitioned into two dis-
tinct tiers. The middle tier acts as a proto-
col negotiator, allowing the translation of
LDAP, IMAP4, POP3 and SMTP proto-
cols into direct database queries. Each
middle tier server multiplexes the Internet
protocol requests over a relatively small
number of database connections. This
middle tier of protocol listeners work
independently of each other so servers can
be added one at a time as growth dictates,
providing linear scalability. No data reside
on this tier, so the demands for nearly zero
down time can be relaxed as surviving
servers fill in for a failed node.

Oracle’s goal was to reduce the cost of
maintaining the messaging system while
meeting the messaging reliability, scalabil-
ity, and performance needs of a company
consisting of more than 43,000 employ-
ees. In calendar year 2000, the goal has
been achieved; annualized e-mail system
costs declined by $13 million, reliability is
approaching “five 9s,” worldwide opera-
tions are supported by a single corporate
domain, and one-second message delivery
times are standard.

Along with the dollar savings, Oracle
also has a system that is easier to adminis-

ter, support for standard clients to meet
the needs of a mobile employee base, and
a fault tolerant system that can grow with
the needs of the company.

Many government agencies and cor-
porate enterprises can achieve similar sav-
ings and performance improvements in
their e-mail systems. Organizations may
set targets well below the 50-to-1 e-mail
server reduction that Oracle has already
achieved, but huge potential savings
would still accrue. Some organizations
may be able to achieve high degrees of
consolidation along the lines of the Oracle
model.

Consolidating the Network

For Oracle these changes — leveraging the
Internet and globalizing e-mail — meant a
heavy emphasis on redesigning its Wide
Area Network. Previously, each of the
Oracle subsidiaries throughout the world
ran localized applications within each
country’s data center. Oracle’s existing net-
work at the time was not designed to meet
the demands placed by running global
applications from a single data center [4].

The biggest impact to the network was
probably the most obvious: to have ade-
quate capacity on all WAN links to carry
the increased traffic load. The second
biggest impact was one of availability. As
users become increasingly dependent
upon the WAN to run their business, the
network design had to be as resilient as
possible.

Since users were accustomed to inter-
acting with a local applications server,
enjoying LAN performance characteris-

tics, Oracle had to look to reduce the
WAN latency as much as possible. The
ability to route traffic to a disaster recovery
data center also became a network design

May 2001 www.stsc.hill.af.mil 21

Things to Consider in

Consolidating an E-Mail

System
Many companies offer hardware and
software solutions for e-mail consolida-
tion. Here are a few points to keep in
mind while you do your research along
with some of the results Oracle achieved
in its solution:
— How many users can run on the sys-
tem and still maintain rapid response
times? An audited Oracle benchmark
simulating 360,000 concurrent users on
a single server with an average of over
13,700 messaging transactions per
minute resulted in a response time of less
than one second for a typical user
sequence of sending or retrieving/reading
email.
— What percent of server utilization
reduction can be expected? Just by mov-
ing away from proprietary email clients,
server utilization on the Oracle messag-
ing system was reduced by an average of
15 percent to 20 percent, enhancing
overall performance of the messaging sys-
tem.
— What level of fault tolerance can be
achieved? Oracle’s messaging system
node failure on the back end does not
preclude data access because all data can
be accessed from any node. Data integri-
ty is maintained because committed
work on a failed node is recovered auto-
matically without administrator inter-
vention and without data loss.
— In a node failure, how easily can load
be balanced across surviving machines?
Oracle’s messaging system uses multiple
servers, labeled the IMAP servers in the
single instance architecture diagram, run-
ning OES in the middle tier, which are
load-balanced. A failure of any of these
machines simply means that users are
redistributed among the surviving
machines without loss of service.
Similarly, Oracle Internet Directory is a
highly available system.
— How will the system cut costs? Oracle
achieved cost reductions by using soft-
ware that can make the most of a smaller
amount of powerful hardware.

Figure 3 : Messaging Workload Tiers

Streamlining Brings Oracle Big Savings, Better Service

consideration point.
The first task was to determine the

actual traffic load that the single instance
applications would place on the WAN
links. E-mail, by its nature, is impossible
to model using traditional modeling tools.
The message sizes can vary greatly in size,
from a 1KB message to a multi MB mes-
sage with an attachment. The occurrence
of these messages is also too random to
model.

Oracle set out to actually measure the
existing traffic load on the local mail
servers. It found that traffic arrived at a
fairly consistent number from .6 to .8
kbps. Not wanting to err on the low side
and for planning purposes, the company
used 1kbps per user, .8kbps of measured
traffic + .2kbps for headroom. The per
user number was multiplied by the num-
ber of users in each country by 1kbps to
determine how much the WAN capacity
needed to be increased for consolidating
the email application. Therefore, a 200-
person office would require capacity of
200kbps on the WAN links.

Oracle used 1kbps per user to deter-
mine where and how much the WAN
capacity needed to be upgraded. Network
resilience was increased, especially for its
most critical locations, by carrier diversity
and route diversity where possible, and by
ensuring major backbone links do not tra-
verse the same marine cable. The network
had to be capable of automatically re-rout-
ing traffic to the disaster recovery data cen-
ter located in Colorado Springs. To hold
recurring WAN costs, a new network hub
was created in Japan for North Asia loca-
tions. For example, Korea’s mileage to the
United States was reduced by more than
5,000 miles. There was a similar mileage
saving for China as well. Oracle also con-
verted two of the 64Kbps-satellite circuit
at its India Development Center to a
768Kbps circuit over marine cables.

To mitigate earthquake concerns in
Japan, Oracle split the network hub to two
locations, Tokyo and Osaka, which are
about 300 miles apart. The network hubs
are located within carrier facilities, which
are built to withstand earthquakes and
other utility failures. With this design, the
Japan-to-U.S. circuit’s hub is out of Tokyo
and the Japan-to-Singapore circuit’s hub is
out of Osaka. The North Asia countries
normally have hubs out of Tokyo but can

be switched to the Osaka facility in the
event of a failure in Tokyo.

Also, in keeping with its design goals,
the resilience between Singapore and
Japan is built with high capacity links
from different carrier’s facilities. This
design allows for Japan and Singapore to
act as each other’s backup and also main-
tain a full-time high-capacity link into the
backup data center via the Singapore to
Colorado Springs link. Similarly, the two
sites in Australia back each other up and
provide a direct link into the disaster
recovery site, as well as a third backup
route via Singapore being available.

The new Asia Pacific network met all
of the design goals: increased capacity and
resilience, reduced latency, and automatic
routing to the disaster recovery site. In
addition, Oracle was able to make all of
these network changes without incurring
too much of an increase in the run rate.

For example, Oracle previously had a
768kbps International Private Leased Circuit
(IPLC) between Japan and the United States.
Management upgraded to an Asynchronous
Transfer Mode (ATM) service of 3mbps
Sustained Cell Rate (SCR)/6mbps Peak Cell
Rate (PCR) for approximately $6,000 per
month less. That’s quadruple the bandwidth for
less money. Once the Japan hub was creat-
ed, Oracle was able to provision ATM
services to three out of the four North
Asian sites, which were obtained at signif-
icantly less cost per kbps compared to the
bandwidth provisioned over IPLCs [same
as above] to Singapore.

Another example is the T-1 IPLCs into
Australia from the United States. By
changing to a carrier with a new presence
in Australia, Oracle obtained the two T-1s
for $9,000 per month less than the previ-
ous single T-1 service. The third T-1 to
Colorado Springs is $9,000 per month less
than the previous 768k circuit. This was
done through renegotiating of the contract
with the existing provider of the 768kbps
service.

Within the United States, the network
is based upon ATM and Frame Relay cir-
cuits. Oracle currently has 37 ATM sites
and 44 Frame Relay sites for a total of 81
sites. Each site has at least two PVCs; one
to headquarters and one to the disaster
recovery site. Through new rates obtained
by renegotiating with an existing U.S. net-
work carrier and making use of a new net-

work service offering, Oracle was able to
double the bandwidth capacity to 70 of
the sites and still realize a savings of
$18,000 per month.

These changes did not happen over
night. Oracle’s methodical approach to
using the Internet, creating a global e-mail
system and re-designing its WAN to a
more centralized model, laid the founda-
tion, over which Oracle could then inte-
grate its business systems and leverage ulti-
mate cost savings.

Implementing Internet-Based

Integrated Applications
The final implementation step was to roll
out global Internet-based applications that
allowed customers and employees to access
information from a single database
through an Internet browser, and to do
transactions on their own such as on-line
shopping or filing on-line employee
expense reports. The cost of processing
expense reports went from $60 down to
$10, saving a total of $11 million in fiscal
2000. In total, the combination of other
internal self-service applications cut
employee costs by $150 million.

Through Internet customer self-serv-
ice Oracle reduced the cost of supporting
customers by $550 million in fiscal 2000.
Several global databases allow customers
to enter their own bug reports. This saves
both time and money because individuals
sitting on the phone do not have to serve
as data entry go-betweens. It is estimated
that a call handled by a Website is $20,
while one handled by a person, which like-
ly results in more follow up, costs $350.
This change allowed Oracle to increase the
chances of solving a problem by 100 per-
cent and reduce costs by a factor of 17.

Oracle also saw huge savings in cus-
tomer training. The company averaged a
$250 cost per head to train customers at
hotel seminars or conference centers. They
moved training seminars online and
dropped the cost per attendee to about $2.
Oracle’s margins on its education segment
jumped to 41 percent in 2000 from 17
percent in 1999.

Oracle’s infrastructure consolidation
has certainly reduced operations and
maintenance costs, with far fewer servers
to administer. And, because web-enabled
applications do not require installation of
a software suite on individual clients

22 CR O S S TA L K The Journal of Defense Software Engineering May 2001

Software Engineering Technology

May 2001 www.stsc.hill.af.mil 23

beyond an e-mail-capable web browser,
workgroup administration costs have
declined dramatically. Some savings must
also be apportioned to resourcing the sup-
porting IT workforce and to establishing
client help-desks where new or reengi-
neered processes are introduced.

While Oracle is still in the midst of
transformation and moving all its business
processes to the Web, cost savings for new
capabilities in knowledge management are
still being defined. However, this area
holds the promise for the greatest resource
savings. Many cost reductions will derive
from reengineering secondary processes
that exist to enable legacy activity that is
no longer required in a knowledge man-
agement environment (e.g., context-based
content search routines that automatically
return requested information, greatly
reducing the requirement to maintain call
centers).

For Oracle, what once was a pipe
dream of consolidating stove pipe systems
has now turned those client-server night-
mares into fluid, Web-based information
streams of seamless integration, making IT

dreams come true while keeping bottom
lines positive.◆
References

1.Karpain, Greg and Myers, Leeanne, Keep It
Simple: How Oracle Consolidated Its Global
Infrastructure into a Centralized E-Business
Architecture, Oracle White Paper, September
2000.

2.Whitechurch, Charles, USAF Could

Leverage Its Oracle Enterprise License
To Enhance E-Mail Performance and
Lower Total Cost of Ownership, Oracle
White Paper, August 2000 .

3.Lee, Sandra, Cost Savings on Electronic
Mail Through Consolidation, Oracle
Paper #965.

4.Ellison, Larry, How We Saved A Billion
Dollars, Oracle 2000 Annual Report.

June 11-13

E-Business Quality Applications Conference

qaiusa.com/conferences/june2001/index.html

June 18-22

ACM/IEEE Design Automation Conference

www.dac.com

June 25-27

2001 American Control Conference

www.ece.cmu.edu/~acc2001

July 1-5

Eleventh Annual International Symposium

of the International Council on Systems Engineering

incose.org/symp2001

July 7-13

2nd Int'l Symposium on Image and Signal

Processing and Analysis ISPA'01

ispa.zesoi.fer.hr/

August 1-5

0HCI International 2001: 9th International Conference

on Human-Computer Interaction.

1st International Conference on Universal Access

in Human-Computer

Interaction (UAHCI 2001)

hcii2001.engr.wisc.edu/

August 27-31

Fifth IEEE International Symposium on

Requirements Engineering

www.re01.org/

September 10-14

Joint 8th European Software Engineering Conference (ESEC) and 9th ACM SIGSOFT

International Symposium on the Foundations of Software Engineering

(FSE-9)

www.esec.ocg.at/

Coming Events

About the Author

SStteevveenn RR.. PPeerrkkiinnss has a
long career history in the
information technology
industry, spanning sales
and consulting for finan-
cial services and govern-

ments in the United States and Europe.
He is also Senior Vice president of Oracle
Service Industry’s Consulting Practices.
Before joining Oracle eight years ago, he
worked for Arthur Young & Co., Booz-
Allen & Hamilton, and the Department
of Justice. Perkins manages a staff of
2,600 as senior vice president of Oracle
Federal Government, U.S.Financial
Services and Oracle Service Industry’s
Consulting Practices. He holds a master’s
degree in public administration from
American University.

FFoorr qquueessttiioonnss ccaallll::
TTrraaccyy LL.. SSttrreellsseerr
OOrraaccllee CCoorrppoorraattiioonn
11991100 OOrraaccllee WWaayy
RReessttoonn,, VVAA 2200119900
VVooiiccee:: 770033--336644--55771133
FFaaxx:: 770033--336644--33002266
ttrraaccyy..ssttrreellsseerr@@oorraaccllee..ccoomm
wwwwww..oorraaccllee..ccoomm

Streamlining Brings Oracle Big Savings, Better Service

24 CR O S S TA L K The Journal of Defense Software Engineering May 2001

Controlling cost, schedule, and quality
in a software development project

remains a challenging task. This type of
control is difficult largely because of our
inability to accurately measure attributes
of the software development process, espe-
cially quality [1]. Measuring the quality of
development processes and artifacts then
relating them to final software product
quality is not a process that is well under-
stood. Under constant pressure to reduce
cost and schedule, software engineers
often use reduction techniques without
fully understanding their impact on
processes and final product quality.

Nowhere is this truer than in the soft-
ware testing process. Software testing can
improve software quality, but at a signifi-
cant cost. It is not unusual for 40 percent
to 80 percent of product development cost
to be spent finding and fixing software
errors [2]. Balancing testing cost and
schedule with quality is difficult. Ad hoc
reductions in the testing effort may bring
short-term savings in cost and schedule.
Unfortunately, these savings may be erased
by quality problems discovered later in the
product life cycle where fixes are expensive
and a product’s reputation may be badly
damaged.

In this article, we present an approach
that reduces black-box testing effort while
maintaining the quality of the testing
process. By quality, we refer to fault-detec-
tion capability of the test suite, or simply,
how many faults a test suite uncovers. The
type of software faults are those related to
the correctness of program output; other
types of software faults associated with
other quality attributes such as perform-
ance, fault tolerance, usability, etc. are
addressed in other testing process areas.
Our goal is to create a reduced test suite
that is smaller in size than the original test
suite. The reduced test suite, however, is to
maintain the fault detection capability of

the larger, original test suite. This ensures
that any savings in testing cost and sched-
ule gained by executing the reduced test
suite are not lost to expensive field repairs.
To accomplish this, we perform additional
analysis of the program under test. By
using information gathered from the pro-
gram specification and implementation,
we can reduce the size of the original test
suite in a controlled fashion that ensures
that the original suite’s fault detection
capability is maintained.

While we believe our approach is
applicable in a wide array of testing situa-
tions, in this article we focus on our initial
efforts of applying our approach to black-
box testing and the problem of combina-
torial testing in data-driven programs. The
following sections define the problem and
current approaches; our approach, called
Input-Output (IO) Analysis; details of
implementing IO analysis; the results of
experimental studies using our approach;
and the conclusion.

Combinatorial Testing
Techniques
In this article, we focus on black-box test-
ing of data-driven programs. Black-box
testing ensures that a program meets its
specification from a behavioral or func-
tional perspective and is typically per-
formed without knowledge of software
internals. Black-box testing can be applied
to both control-driven and data-driven
programs. In control-driven applications,
outputs are determined by sequences of
events or processing states. In data-driven
applications, manipulation of data inputs
and the relationships between data items
determine outputs. Data driven applica-
tions, which typically have multiple inputs
and outputs, include transaction-based
systems, order-processing systems, appli-
cation program interfaces, and many of
the form-based applications common on

the Web today.
Black-box testing techniques used for

data-driven programs include equivalence-
class partitioning and boundary value
analysis [3]. Using these techniques,
testers select test data values for each of the
program’s input variables. The tester must
then consider how to test combinations of
the selected test data values. It is important
to test different input combinations, oth-
erwise the result could be an unacceptable
number of undetected software faults.

The most comprehensive approach to
testing program-input combinations is
referred to as combinatorial testing. In
combinatorial testing, all possible combi-
nations of the test data values selected for
the program inputs are tested.
(Combinatorial testing should not be con-
fused with exhaustive input testing, which
is testing every possible data value, valid
and invalid, in every possible combina-
tion. This generates astronomically large
test suites in all but trivial applications.)
From a software quality perspective, com-
binatorial testing is desirable because it
covers a large portion of the program’s
input space, resulting in fewer faults
passed to the end-users of the product.

The challenge in combinatorial testing
is managing the size of the test suite. In
reality, combinatorial test suites grow very
rapidly in size, frequently making the
approach impractical. To fit within avail-
able resources and schedule, several
approaches could be considered to reduce
the size of the combinatorial test suite.
Orthogonal arrays [4] and experimental
design techniques [5, 6] have been sug-
gested as ways of reducing the number of
combinatorial tests. These techniques gen-
erate tests by combining test data for sub-
sets of the input variables, e.g., tests may
be generated for all pair-wise combina-
tions of program inputs. These techniques
do reduce the number of combinatorial

Maintaining the Quality of Black-Box Testing
Patrick J. Schroeder Dr. Bogdan Korel
Illinois Institute of Technology Illinois Institute of Technology

Techniques to reduce cost and schedule can wreak havoc with product quality, especially in the software testing
process. Shortsighted reductions can unwittingly result in the loss of long-term customers. In this article, the authors
present an automated approach to reducing the cost of black-box testing while maintaining the quality of the test-
ing process and software product. Experimental studies have shown a significant cost reduction using this automat-
ed approach.

PPaattrriicckk JJ.. SScchhrrooeeddeerr wwiillll pprreesseenntt oonn MMaayy 33 -- TTrraacckk 77

tests dramatically, but their impact on the
fault-detection capability of the test suite,
especially when compared to combinator-
ial testing, is unknown. Random sampling
[7] may also be used to reduce the test
suite, but it leads to a reduction in fault-
detection capability. In the next section,
we present an automated approach that
reduces the combinatorial testing effort
while maintaining the fault-detection
capability of the combinatorial test suite.

Combinatorial Testing Using

Input-Output Analysis

Our approach performs additional analysis
of the program under test. Information
gained from this analysis is used to create
a reduced test suite that is smaller than the
combinatorial test suite (a subset of the
combinatorial test suite). The reduced test
suite maintains the fault detection capabil-
ity of the larger, combinatorial test suite.
We refer to this analysis as Input-Output
(IO) analysis because it identifies the rela-
tionships between a program’s inputs and
outputs. Combinatorial testing can then
focus on those input combinations that
affect a program output, rather than con-
sidering all possible input combinations.

For example, consider program P1 in
Figure 1. Program P1 has three inputs
(A, B, and C) and two outputs (Y and Z).
To test this program using combinatorial
testing, we would first select test data val-
ues for each of the program inputs using
black-box test design techniques. Assume

we select test data values for each of the
three input variables, as in Table 1.

Now consider how to test combina-
tions of the input variables. For simplicity,
assume there are no constraints among the
input variables, and that we will execute
combinatorial testing of the selected test
data values. The combinatorial test suite
generated from the test data values select-
ed for the program inputs is listed in Table
2.

Our goal is to reduce the effort of
combinatorial testing without reducing
fault-detection capability. Our approach
takes advantage of the observation that in
data-driven programs not all inputs influ-
ence every program output. We find this
to be a common occurrence in our study
of this class of programs. We use IO analy-
sis to identify relationships between pro-
gram inputs and outputs, referred to as IO
relationships. Based on the IO relation-
ships combinatorial testing is reduced to
testing only those input combinations that
affect a program output.

For example, suppose we identify the
IO relationships for program P1 as in

Figure 2. We find that output Y is a func-
tion of inputs A and C, and that output Z

is a function of input B, only. Since Y is a
function of inputs A and C only, these two
inputs will be used to generate combinato-
rial tests for output Y. Since there are four
unique combinations of the test data val-
ues selected for inputs A and B, this would
result in four tests. Similarly, output vari-
able Z is a function of input B only, so
tests for output Z will be generated from
the test data values selected for input B,
only. Since there are four test data values
selected for input B, this results in four

additional tests for a total of eight tests.
However, notice that the test sets created
from the perspective of outputs Y and Z
can be merged into a test suite of size four,
as in Table 3. The advantage of our
approach is apparent; the size of the com-
binatorial test suite has been reduced from
16 to four tests.

By only generating tests for the input
combinations that influence a program
output, a reduced test suite is created.
However, has the fault detection capabili-
ty of the combinatorial test suite been
maintained? For data-driven programs, it
is easy to show that the fault detection
capability is maintained if the IO relation-
ships are correct. For example, if the IO
relationships for output Y are correct, any
software fault that causes an incorrect
value at output Y is detected by entering
some combination of the A and C test
data values. There are only four unique
combinations of the test data values select-
ed for inputs A and C. In the 16-test com-
binatorial test suite, these four unique
combinations of A and C are unnecessari-
ly repeated four times: once for each test
data value selected for input B. Clearly,
from the perspective of output Y, there are
repetitive tests in the combinatorial test
suite. Repeating a test does not increase
the fault detection capability of the test
suite; it only increases its size. Similarly,
removing repetitive tests from the test
suite does not reduce its fault detection
capability; it only reduces the size of the
test suite. A similar analysis can be done
for output Z.

Maintaing the Quality of Black-Box Testing

Table 2: Combinational Test Suite Program P1

Figure 1: Program P1 -Multiple Inputs, Outputs Figure 2: Program P1-Input/Output Relations

Table 1: Selected Test Data Values for Program P1

Input Var. Test Data Values
A 1, 2
B North, South, East, West
C TDC, BDM

Test ID Input A Input B Input C
C1 1 North TDC
C2 1 North BDM
C3 1 South TDC
C4 1 South BDM
C5 1 East TDC
C6 1 East BDM
C7 1 West TDC
C8 1 West BDM
C9 2 North TDC
C10 2 North BDM
C11 2 South TDC
C12 2 South BDM
C13 2 East TDC
C14 2 East BDM
C15 2 West TDC
C16 2 West BDM

May 2001 www.stsc.hill.af.mil 25

Table 3: Reduced Test Suite for Program P1

Test ID Input A Input B Input C
C1 1 North TDC
C4 1 South BDM
C13 2 East TDC
C16 2 West BDM

Implementation of

Input-Output Analysis
IO analysis is used to determine the rela-
tionship between a program’s inputs and
outputs. The IO relationships are used to
reduce a combinatorial test suite by
removing tests that are repetitive from the
perspective of the program outputs. The
fault detection capability of the test suite is
maintained because repeating tests will not
expose any additional software faults.

To use IO relationships to reduce the
number of tests, we must ensure that the
IO relationships are correct. If we reduce
the number of combinatorial tests using
IO relationships that are incorrect, we run
the risk of removing tests that could
expose a software fault. This would result
in the reduced test suite having a lower
fault detection capability than the combi-
natorial test suite. Therefore, it is impor-
tant that we validate the IO relationships
before using them to reduce the number of
tests.

We validate IO relationships in much
the same way that we validate any other
software function. We identify an expected
set of IO relationships from the program
specification, and we compare it to the
actual IO relationships as implemented in
the software. This process is analogous to
comparing a test’s expected result with the
actual result obtained from a program.

The first step in validating the IO rela-
tionships is to analyze the software’s speci-
fication to identify the expected IO rela-
tionships. If one is using formal specifica-
tions, or rigorous component specifica-
tions, the IO relationships may be explic-
itly stated, or may be easily derived in an
automated fashion. For other specification
techniques, some additional analysis may
be required to develop the expected IO
relationships.

The overhead associated with identify-
ing the expected IO relationships should
be small, because the relationships are
already being identified at several points in
the software development process. For
instance, software developers must identi-
fy IO relationships in the process of imple-
menting the program. One cannot write
code to produce a program output with-
out knowing which program inputs are
used to create that output. Similarly, soft-
ware testers create expected results for each
of their tests. Again, one cannot determine

the expected result of a test without know-
ing which program inputs are used to cre-
ate an output. The software development
process could be modified to record the
expected IO relationships as they are
encountered.

The next step in validating the IO
relationships is to identify the actual IO
relationships implemented in the software.
To identify these relationships, static
analysis or execution-oriented analysis can
be used. Both of these techniques can be
automated.

Static analysis is analysis of a program’s
source code. This analysis, accomplished
using a source code specific tool, can pro-
duce information on a variety of the pro-
gram’s characteristics. One static tech-
nique used to determine relationships
between inputs and outputs is referred to
as Input-Output Relation Analysis [8].
This analysis uses a program dependence
graph to determine which program inputs
potentially influence a program output.
Other program dependence analysis tech-
niques used in code optimization, static
slicing, and white-box testing, e.g. [9, 10,
11], may also be used to determine input-
output relationships.

Execution-oriented analysis, as shown
in Figure 3, is another technique that may
be automated to identify actual IO rela-
tionships. This technique is based on pro-
gram execution [12, 13] and does not
require access to the program’s source
code. This technique does require, howev-
er, some type of test execution system, or
test harness, to automated data entry and
output capture. To determine relation-
ships between inputs and outputs, the test

harness executes the program under test
many times altering only one input value.
By observing changes in program outputs,
it is possible to determine which outputs
are affected by this input. This process can
be repeated for all input variables in turn
across a relatively large number of test data
values. There is no guarantee that all IO
relationships in a program will be detected
using execution-oriented analysis.
However, execution-oriented analysis can
be used to identify all IO relationships
exercised by a test suite such as the combi-
natorial test suite.

An advantage of execution-oriented
analysis over static analysis is that execu-
tion-oriented analysis does not require the
source code for the application. This
makes execution-oriented analysis applica-
ble in many testing situations, including
testing of commercial off-the-shelf com-
ponents. Execution-oriented analysis also
has low startup costs, especially if test
automation is already part of the test
process. Another advantage to execution-
oriented analysis is that the knowledge
base and skill sets required to execute it
closely match those of many software
testers. Using static analysis to determine
IO relationships, on the other hand,
requires knowledge of the implementa-
tion’s programming language and software
internals.

The final step in validating the IO
relationships is to compare the expected
IO relationships identified in the program
specifications to the actual IO relation-
ships implemented in the software. This
step is necessary if we are to maintain the
fault detection capability of the reduced

Input-Output
Analyzer

Full
Combinatorial

Test Suite

Captured
Program
Outputs

Test
Execution
System

System
Under
Test

Actual
IO Relationships

Figure 3: Execution-Oriented IO Analysis

26 CR O S S TA L K The Journal of Defense Software Engineering May 2001

Program

Software Engineering Technology

Maintaining the Quality of Black-Box Testing

test suite. This is because the actual IO
relationships could differ from the expect-
ed IO relationships. This difference could
be due to different interpretations of the
specification, to a fault in the software, or
to complexities that arise during imple-
mentation that are not accounted for in
the specification. To maintain the fault
detection capability of the reduced test
suite, these differences must be resolved
before the IO relationships are used to
reduce the combinatorial test suite

Experimental Studies
We have conducted several experimental
studies using our approach. The goal of
these was to understand the overhead
involved with execution-oriented IO
analysis and to determine the degree of
reduction in testing effort.

We chose three different software
applications to conduct the studies. The
first application was the Total Return
Report produced by a Windows-base per-
sonal financial software package. In testing
a large system such as this, testing tasks are
broken down by function area and
assigned to testers. The Total Return
Report represents a reasonably sized com-
binatorial testing task that may be assigned
to an individual tester. The next applica-
tion we studied was the Digital Trunk
Configuration (DTC) software. This pro-
gram provides an easy way to rapidly con-
figure digital telephone trunks. The third
application, the Liquidity Spreadsheet,
was studied in conjunction with financial
analysts who use spreadsheet programs
extensively for financial modeling, report-
ing, and forecasting.

The procedure we used to conduct the
experiments included the following steps.
First, test data values for each of the appli-
cation’s input variables were selected using
equivalence-class partitioning and bound-
ary-value analysis. We then generated a
combinatorial test suite from the test data
values selected for each application using a
test generation tool. The combinatorial

test suite was executed automatically in a
test execution system, and the outputs
were captured. Finally, the inputs and out-
puts of each application were analyzed to
determine the IO relationships. The
reduced test suite was generated using
these IO relationships. All studies were
executed on a 250 megahertz Window-
base PC. Table 4 lists the results of the
experimental studies. Sizes are reported as
the number of tests.

Our results show a drastic reduction
in the number of tests required for these
applications. This reduction does not
come at the expense of a reduced testing
quality. The automated techniques used
keep the overhead of IO analysis low, mak-
ing it a valuable combinatorial testing
technique in many situations.

In implementing IO analysis, several
costs must be considered. The develop-
ment effort required to create the tools to
perform IO analysis (test data generator,
test harness, and IO analyzer) in our case,
was minimal; although we do not want to
underestimate the effort required to auto-
mate program execution is some situations
[14, 15]. Creating the test harness had low
overhead, but test harness execution times
could get quite long for some applications.
For programs that use a command line
interface, such as the DTC software, IO
analysis executes very quickly. For pro-
grams with a Graphical User Interface, as
used in the Total Return Report study,
data entry is complex and relatively slow.
The speed of this process could be
improved by using a faster computer, or by
distributing the work across multiple
machines.

This leads us to comment briefly, on
how IO analysis may be used in the testing
process. We assume a software production
process that includes multiple pre-release
versions of the software. Each version may
incorporate fixes and incremental
enhancements. For programs with reason-
able IO analysis execution times, it is fea-
sible to run the analysis with every pre-
release version of the software. Executing

IO analysis on every version of the soft-
ware ensures that any changes in the IO
relationships from one version to the next
would be detected. In this scenario, the
savings to the test team are largely in the
effort to calculate and check the expected
result for each test case.

IO analysis executes a combinatorial
test suite, but does not require determina-
tion of expected results, or comparison of
expected results to actual program out-
puts. When IO analysis is used, the deter-
mination and comparison effort is only
required of tests in the reduced test suite.
In the case of the Liquidity Spreadsheet,
the effort to determine and compare
1,058,841 expected results is reduced to
the effort required for only 625 expected
results. This represents a considerable sav-
ing to the test team considering that re-
validation of expected results may be nec-
essary with each pre-release version of the
software.

For programs where data entry is
complex and relatively slow, or where the
combinatorial test suite is large, it will not
be possible to execute IO analysis on every
pre-release version of the software. In
these situations, it is possible to execute IO
analysis using a small subset of the combi-
natorial test suite. This subset can be con-
structed to validate the presence of the
expected IO relationships in the software.
The subset does not, however, ensure that
other, possibly erroneous, IO relationships
exist. IO analysis using this subset of tests
could be executed on every pre-release ver-
sion of the software. The reduced test
suite created from this analysis will have a
fault detection capability close to that of
the combinatorial test suite. To ensure
that the fault detection capability of com-
binatorial testing is maintained, IO analy-
sis using a complete combinatorial test
suite must be executed at some point.
This would likely occur late in the product
cycle when the software is stable and few
additional software changes are expected.

Conclusion

We have presented an approach to combi-
natorial testing that reduces the testing
effort while maintaining the fault detec-
tion capability of the combinatorial test
suite. This approach can be used with lit-
tle overhead for many applications espe-
cially where test automation is already in

Table 4 : Results of Experimental Studies

May 2001 www.stsc.hill.af.mil 27

use. The experiment’s results showed a
drastic reduction in the testing effort of
the data-driven programs. The low over-
head associated with IO analysis and its
ability to maintain the fault detection
capability of the test suite makes it a valu-
able alternative to combinatorial testing.

The fault-detection capability of our
approach is sensitive to correct identifica-
tion of IO relationships. Automated IO
analysis methods may not guarantee an
identification of essential relationships in
the presence of certain types of software
faults. Therefore, it is important that soft-
ware engineers validate automatically
identified IO relationships in order to
ensure their correctness. This extra effort
may pay off later in reducing the testing
effort while maintaining the quality of the
reduced test suite. ◆

References

1.DeMarco, T., Controlling Software
Projects: Management, Measurement and
Estimation, Yourdon Press, Englewood
Cliffs, N.J., 1982.

2.Kaner, C.; Falk, J.; and Nguyen, H. Q.,
Testing Computer Software, International
Thomas Computer Press, New York,
1993.

3.Myers, G., The Art of Software Testing,
John Wiley & Sons, New York, 1979.

4.Phadke, M. S., Planning Efficient
Software Tests, CROSSTALK, Vol. 10,
No. 10, pp. 11-15, October 1997.

5.Dalal, S.; Jain, A.; Karunanithi, N.; Leaton, J.;
and Lott, C., Model-Based Testing of a
Highly Programmable System, Proceedings
of the International Symposium on Software
Reliability Engineering, pp. 174-178,
November 1998.

6.Burr, K., Combinatorial Test
Techniques: Table-based Automation,
Test Generation and Code Coverage,
Proceedings of the International
Conference on Software Testing,
Analysis, and Review, October 1998.

7.Chen, T.Y. and Yu, Y.T., On the
Expected Number of Failures Detected
by Subdomain Testing and Random
Testing, IEEE Trans. Software Eng., Vol.
22, No. 2, pp. 109-119, February 1996.

8.Korel, B., The Program Dependence
Graph in Static Program Testing,
Inform. Processing Let., Vol. 24, No. 2,
pp. 103-108, January 1987.

9.Ferrante, J.; Ottenstein, K.; and
Warren, J., The Program Dependence
Graph and Its Use in Optimization,
ACM Transactions on Programming

Languages and Systems, Vol. 9, No. 5,
pp. 319-349, 1987.

10.Horwitz, S.; Reps, T.; and Binkley, D.,
Interprocedural Slicing Using Dependence

Graphs, ACM Transaction on Programming
Languages and Systems, Vol. 12, No. 1, pp.
26-60, 1990.

11.Duesterwald, E.; Gupta, R.; and Soffa,
M.L., Rigorous Data Flow Testing
Through Output Influences, 2nd Irvine
Software Symposium, Irvine, Calif.,
pp. 131-145, Mar. 1992.

12.Ferguson, R. and Korel, B., The
Chaining Approach for Software Test
Data Generation and Methodology,
Vol. 5, No. 1, pp. 63-86, 1996.

13.Schroeder, P.J. and Korel, B., Black-
Box Test Reduction Using Input-
Output Analysis, Proceedings of the
International Symposium on Software
Testing and Analysis, pp. 21-24,
August 2000.

14.Bach, J., Test Automation Snake Oil,
Windows Technical Journal, Oct. 1996,
pp. 40-44.

15.Fewster, M. and Graham, D., Software
Test Automation: Effective Use of Test
Execution Tools, Addison-Wesley, New
York, 1999.

About the Authors

BBooggddaann KKoorreell,, Ph. D., is an associate
professor of Computer
Science at the Illinois
Institute of Technology.
His research interests
include software engi-
neering and automated

software testing and analysis.

IIlllliinnooiiss IInnssttiittuuttee ooff TTeecchhnnoollooggyy
DDeeppaarrttmmeenntt ooff CCoommppuutteerr SScciieennccee
1100 WW.. 3311sstt SSttrreeeett
CChhiiccaaggoo,, IILL 6600661166
PPhhoonnee:: 331122--556677--55114455
FFAAXX:: 331122--556677--55006677
EEmmaaiill:: kkoorreell@@iiiitt..eedduu

PPaattrriicckk JJ.. SScchhrrooeeddeerr is currently a Ph.D.
candidate at the Illinois
Institute of Technology
involved in software test-
ing research. Previously,
he worked as a software
developer and software

tester on a variety of industrial projects,
including seven years at AT&T Bell
Laboratories. His research interests
include software engineering, software
reliability engineering, and automated
software testing and analysis.

IIlllliinnooiiss IInnssttiittuuttee ooff TTeecchhnnoollooggyy
DDeeppaarrttmmeenntt ooff CCoommppuutteerr SScciieennccee
1100 WW.. 3311sstt SSttrreeeett
CChhiiccaaggoo,, IILL.. 6600661166
PPhhoonnee:: 331122--556677--55115500
FFaaxx:: 331122--556677--55006677
EE--mmaaiill:: sscchhrrppaatt@@iiiitt..eedduu

28 CR O S S TA L K The Journal of Defense Software Engineering May 2001

Software Engineering Technology

“Computers are not meant to usurp

human roles, but to aid an

individual’s work.”

Donald D. Spencer

“Most industrialized nations today

recognize that the computer is the

cornerstone of their national defense

and their national economics in the

future.”

C.W. Spangle

“Every educated person should have

some understanding of the principles

on which computers operate.”

J. N. Snyder

“You know the definition of the

perfectly designed machine ...

The perfectly designed machine is one

in which all its working parts wear

out simultaneously. I am that

machine.”

Frederick A. Linderman

Managing the Invisible Aspects of High-Performance Teams
RADM Patrick Moneymaker Dr. Lynn Carter
Ocean Systems Engineering Corp. Software Engineering Institute

If it were easy, everyone would be doing
it. How many times have you heard this

in the context of mastering a difficult task?
The truth is, most challenges have a layer
of complexity just beneath the surface
that, once understood and applied, leads
to the solution. The trick is to acquire a
knack for seeing behind the everyday cir-
cumstances. The famous French aviation
pioneer and philosopher, Antoine de
Saint-Exuprey, had a key insight that
applies: He contended that all that was
most important in life was invisible. The
invisible or counter-intuitive observations
of management principals described here
will hopefully provide a deeper under-
standing of difficulties previously experi-
enced and some new ways to use tradi-
tional disciplines.

Thanks to a widely diverse career, I
have a valuable perspective on two
demanding yet diverse disciplines: military
aviation and software development. As a
Naval aviator I experienced the demands
and thrills of flight training, carrier opera-
tions, combat, and ultimately duty as
commander and flight leader of the U.S
Naval Flight Demonstration Squadron,
the Blue Angels. As a senior Navy officer
and now as a senior executive of an engi-
neering services firm, I have been respon-
sible for software maintenance and devel-
opment programs that ranged from the
most strategic and complex to the most
mundane.

During my aviation years I gradually
developed into a seasoned pilot and tacti-
cian with each new level of skill supported
by a solid foundation.

While involved in technology man-
agement I was thrust into a senior man-
agement role where I had little training
and less experience.

Capability Maturity Model® and CMM® are
registered in the U.S. Patent and Trademark
Office as a registered trademark of Carnegie
Mellon University.

Survival depended on applying my
skills and instincts to the new setting. It
was in this transitional setting – from
maintaining situational awareness in air
operations to maintaining effective soft-
ware development program situational
awareness – that I learned universal truths
in management and team-building.

In each of the following insights, I will
describe the software development context
of my observation and my supporting avi-
ation experience. Dr. Lynn Robert Carter,
writing in Italics within the shaded boxes,
will add references to others’ works,
including the Software Engineering
Institute’s (SEI) Capability Maturity
Model® (CMM®). The two perspectives
will hopefully add clarity to managing the
“invisible.”
CCaarrtteerr:: Behind each of Saint-Exuprey’s
invisible truths is a wealth of already cap-
tured knowledge. I’m fond of quoting Dr.
R. W. Hamming in his 1968 Turing
Award lecture where he states:

Indeed, one of my major complaints
about the computer field is that
whereas Newton could say, “If I have
seen a little farther than others it is
because I have stood on the shoul-
ders of giants.” I am forced to say,
“Today we stand on each other’s
feet.” Perhaps the central problem we
face in all of computer science is how
we are to get to the situation where
we build on top of the work of oth-
ers rather than redoing so much of it
in a trivially different way. Science is
supposed to be cumulative, not an
endless duplication of the same kind
of things.

I believe that all human efforts should be
built on the lessons of those who came
before us. To ignore the contribution of
these giants shows our ignorance and tends
to doom us to avoidable pain. Following
each insight, I will provide supporting
material and references to assist you in
obtaining each insight’s full benefit.

Determine Metrics

Parameters First

Understand what you want to monitor
before you ask for metrics. While this
seems obvious, all senior managers face the
same handicap: There is just not enough
time in the day to understand the com-
plexity of every project. Far too often sen-
ior management makes a general call for
metrics (focused on the usual suspects,
cost, and schedule) because they do not
know any better.

The project manager who is concen-
trating on the day-to-day execution details
is forced to drop everything to develop
snapshot graphs showing all is well for the
moment. This ill-conceived request causes
more harm than good. It diverts the proj-
ect staff ’s resources and more often than
not gives senior management a false sense
of security. A better approach would be an
honest one-on-one conversation to deter-
mine the senior managements’ informa-
tion gaps so the executives can fully under-
stand the project’s critical path, and the
project manager can understand the per-
spective from above.

Once this shared understanding is
achieved, and here comes the invisible
part, more meaningful “first derivative”
measurements can be crafted. What do I
mean by first derivative metrics? Simply
those samplings that give warning of
movement in time to make a correction.
In aviation language, it means flying using
the vertical speed indicator (VSI) as well as
the altimeter. The VSI needle moves well
before the altimeter, so if the object is to
maintain a certain altitude, look for the
trend on that instrument first and correct
as needed. Likewise, while it is nice to
know how much fuel (resource) is in the
tank, a fuel flow indicator gives the added
insight of burn rate. The fuel flow indica-
tor is the first derivative instrument used
in conjunction with the quantity indica-
tor. Together they provide the view just

Many of the most important aspects of managing high-performance teams are counter-intuitive, yet we live in a culture
that likes to reward its innovators and heroes even when clearly better solutions already exist. From new insights about met-
rics to the need to celebrate our successes, this paper describes a collection of five management lessons and provides useful
references to sources for those needing implementation details.

Open Forum

May 2001 www.stsc.hill.af.mil 29

RRAADDMM PPaattrriicckk MMoonneeyymmaakkeerr wwiillll ssppeeaakk aatt SSTTCC lluunncchheeoonn CC oonn AApprriill 3300

below the surface data.
In summary, when the call for metrics

is sounded, first work toward a shared
understanding of critical path, and then
agree on what is measured and how.
Anything short of these steps is a waste of
time.
CCaarrtteerr:: In 1984 Victor R. Basili and David M.
Weiss wrote a paper that introduced the Goal-
Question-Measure Paradigm [1]. The heart of
this approach is to start with the organiza-
tional goal that needs to be realized. From
that goal, what are the questions that need
to be answered in order to make corrections
and steer to the goal? Given these questions,
what measures need to be gathered in order
to answer these questions, and how should
this data be processed to obtain the needed
situational awareness on which a mean-
ingful decision can be made? Finally, given
most people’s overload, what mechanisms
do we employ to ensure we take the time to
examine the information and act when we
should?

The first challenge in applying this
paradigm is the lack of clarity and align-
ment in an organization’s goals. Without
this, determining the right questions can be
quite difficult. Even when clarity and
alignment exist, the second challenge is
agreeing to what questions should be asked
and how numeric data, if it can be trust-
ed, would support the decision-making
process. A solution to all of these technical
challenges leaves yet another challenge –
the people. How do we change a heroic cul-
ture of option-based reactive decision mak-
ing to one that values and honors the ben-
efit of data and uses the data wisely? The
benefits of these measures can only be seen
when people both understand and use
them. This requires knowledge, skill, and
wisdom at all levels in the organization.

For more information, Software
Measures and the Capability Maturity
Model [2], may be a useful resource. Those
needing more sophisticated measures see
Measuring the Software Process:
Statistical Process Control for Software
Process Improvement [3]. Anything less
tends to degenerate into something appro-
priate for a Dilbert® cartoon.

®Dilbert is a registered trademark of United
Features Syndicate, Inc.

Follow a Disciplined Path

Discipline enables creativity and innova-
tion. In one of my debates with Carter on
the effects of the CMM on my program-
ming staff, I offered that all code reuse,
libraries, and such might inhibit the pro-
grammer’s creativity. I did not want to
have a crew of demotivated code benders
who bemoaned the yoke of so much atten-
tion to process. Carter offered that quite
the contrary was true. As I gave it more
thought I began to see examples in mili-
tary aviation that conveyed the message.

Considering the dynamics of carrier
aviation it was easy to see that every step in
the process of conducting a combat mis-
sion was, in itself, a small module of disci-
pline. Briefing the flight, pre-flighting the
aircraft and ordnance, launching from the
flight deck, rendezvousing with wingmen,
in-flight refueling en route to the target –
all of these steps and many more had been
practiced until they had become second
nature. This training allowed the pilot to
relegate much of the “house-keeping”
chores to the subconscious, freeing up his
immediate consciousness to meet the
unexpected. Once in the target area and
after the long chain of disciplined steps,
quick thinking, creativity and innovation
was always needed. Any number of
unforeseen events could complicate the
briefed plan. After adjusting for changes,
discipline would again be needed as the
pilot rolled into a steep dive to begin the
bombing run.

The previous quote from Sir Isaac
Newton is applicable here as well. Just as
he had used the efforts of those who had
blazed the trail before him, likewise, disci-
pline and ever-improved process give an
aspiring master a lofty platform from
which to launch his creative assault on the
unknown. So, process discipline properly
applied, can be a catalyst for monumental
discovery. In a world of ever increasing
complexity, the need for the leverage of
process discipline has never been stronger,
nor the opportunity for breakthrough
greater.
CCaarrtteerr:: It is easy to see how a senior leader
and naval aviator could be concerned
when first learning of the CMM and the
additional actions it advocates. With no
formal engineering background and no
opportunity to learn how the benefits of
using the CMM more than balance the

costs, the admiral’s reaction and comments
were understandable. The challenge was to
change his initial perception and begin the
process of building an informed sponsor. At
the heart of any improvement effort is a
continuous effort of sponsorship develop-
ment and sustainment [4].

Nearly every leader has some aspect of
his background where special training and
discipline was required. Evoking those
experiences and relating them to process
discipline has proven very useful to me. The
most difficult part is helping them see the
benefits that come from separating the rou-
tine from the novel. When we learn to see
routine problems and develop proven
methods for addressing them, we obtain
more predictable results and free people to
invest their creativity on the novel aspects
of their work. While it was true that com-
bat pilots could employ common sense to
figure out how to brief each other before a
mission, pre-flight the aircraft, etc., what is
gained and what is lost? Wouldn’t it be bet-
ter to save their creative energies for the
novel aspects of the mission? The problem
with common sense is its inability to tell us
when it is about to fail us.

Senge’s The Fifth Discipline [6] pro-
vides numerous examples of the importance
of capturing and leveraging lessons from
past experiences. He uses the phrase “the
learning organization” to describe a mode
of operating that recognizes that common
sense and the education people tend to
receive are inadequate for the kinds of
work we are called on to perform these
days.

At the heart of The Capability
Maturing Model [6] is the notion of a
process asset library that contains the orga-
nization’s standard software process, soft-
ware life cycles, process tailoring guidelines
and criteria, historical data for selection
and estimation purposes, as well as docu-
mentation for familiarization, training,
and use by professionals. Not mentioned in
this book is what kinds of processes to cap-
ture, what processes to ignore, and the need
to consider different representations of these
processes and other materials for the differ-
ent roles to be played and the different pur-
poses for which it will be used. This is not
really an omission, since the answer for one
organization is likely to be very different
from another.

From my perspective, an organization

30 CR O S S TA L K The Journal of Defense Software Engineering May 2001

Open Forum

must find a balance between allowing the
bright and insightful professionals the free-
dom they need to do their work and lever-
aging the insight of those that have come
before them. This balance protects the
organization from painfully relearning les-
sons. As I tell my SEI Defining Software
Process students, if there isn’t a horror story
or a pot of gold story behind a process asset,
why burden the organization with it?
There is no need to formalize common
sense when it works just fine. The challenge
for every leader is to become familiar with
the horror and pot of gold stories and
ensure everyone sees how the organization’s
disciplines are really only there to help us
avoid the former and leverage the latter.

Stand on Firm Ground
High performance teams need strong
infrastructure. You have a big, important
project, and you have brought in the best
and brightest to form a team. Should you
expect harmony with all of this excellence?
Will they be one big, mature, happy fami-
ly? It is unlikely.

Even with the ideal Myers-Briggs® per-
sonality match up, the most painstaking
selection process, and a tailor-made proj-
ect for your team, the need for a rigid but
porous environment cannot be overstated.
Rigid because you cannot stretch to a goal
on a shaky ladder. Porous because one per-
son’s good idea or word of caution, even
whispered, needs to be heard by the whole
team.

The Blue Angels handle this need for a
communication-rich structure by employ-
ing an extremely thorough briefing and
debriefing process around “the table.”
Representatives from all departments in
the squadron meet before every flight.

All administrative, logistical, and
operational details are discussed. If a mem-
ber has a question it is resolved on the
spot. It is here that pilots mentally rehearse
each maneuver, study the overhead pho-
tography of the airfield, and put on their
game face. Because they take the time to
do this every flight, they can then disperse
at a show site with its hundreds of thou-
sands of spectators and feel confident in
the plan. During the performance, every
aspect from manning the aircraft to de-
planing after the show is videotaped. This
videotape is the debriefing focus, which is

conducted immediately after each show.
These sessions are nothing short of
exhaustive, but every detail is reviewed,
and all comments are heard. So, it is a
framework of structure and ritual that
allows these top performers to be con-
stantly “plugged in.”

Within the software development
domain, a similar construct is achievable.
No, there does not have to be videotaped
coding sessions, but the structure suggest-
ed by the CMM coupled with a little cus-
tomized ritual to get people talking and in
front of the issues can be very powerful.

CCaarrtteerr:: A painful mistake we often make is
assuming that everyone is like us. One
place where this assumption can be most
awkward is in decision making. The book
Type Talk at Work [7] provides a fasci-
nating insight into 16 personality types,
and how they influence success on the job.
In particular, they describe a critical differ-
ence between how two different personality
types – what the Myers-Briggs Type
Indicator® calls “introverts” and
“extraverts” – process information leading
to a decision. Extraverts tend to process
immediately and verbally, wanting to
engage everyone in this process so a decision
can be made. Introverts tend to process
over time and quietly, wanting to think it
through before speaking. Placing people
with these two tendencies in the same room
at the same time and asking them to make
a decision often brings less than optimal
results. Without care, a “decision” can be
reached without the full benefit of all the
team member’s insights and experiences.

Each Blue Angel demonstration begins
and ends with time at the table. Before
each demonstration, issues and concerns are
raised and resolved. This is very similar to
the Intergroup Coordination Key Process
Area in the Capability Maturity Model
[6]. At the heart of these pre-project meet-
ings are risk management activities. What
concerns (risks) do we see? Which are likely
to occur and warrant action? The better the
group is at surfacing the risks, assessing
their probability and impact, selecting
which ones to address, and choosing miti-
gation or contingency actions, the better the
project will be.

After each flight, the Blue Angels reflect
on what happened. From minor issues to
surprises, the team tries to determine what

should be done differently to improve
things the next time. A number of authors
have written about taking time to reflect
on what we have done as an integral part
of becoming better, yet few people actually
take the time to reflect. In Habit 7,
Sharpen the Saw, Steven Covey [8] relates
a story of an exhausted wood cutter so
intent on cutting down a tree that he can-
not see the benefit of taking time to rejuve-
nate and sharpen his dull saw. Donald
Schön [9] helps us see two kinds of reflec-
tion: reflection-in-action and reflection-
on-action. The former addresses adjust-
ment professionals make in real-time based
on the dynamic and unpredictable realities
of our world. The latter is done postmortem
in order to set the stage for a better per-
formance next time.

The Peer Review Key Process Area [6]
strives to reveal issues as early in the life of
the project as possible. Studies have shown
that the longer a defect remains in a system
under development, the greater the cost to
remove it. Leveraging the differing perspec-
tives of the team can uncover the genesis of
defects well before it becomes obvious to the
professional doing the work. In fact, the
notion of continuous peer review is
described in the method called “pair pro-
gramming” [10], where the notion that the
right two people working as a pair can
often produce more than twice as much as
either working alone.

Halt the Hero Cycle

Heroes are often the result of someone
else’s mistake. When a pilot plans a flight,
he takes a host of things into account: dis-
tance to destination, fuel required (some
cushion if the destination weather is bad),
winds aloft, terrain elevation, and on and
on. Why? Because anything short of a suc-
cessful landing at the intended location is
unacceptable.

What if the pilot were handed a flight
plan that did not offer him a fuel reserve
or worse yet, not enough fuel to get to the
destination? Would he even take off on
such a foolish plan? Thankfully the laws of
physics are broadly understood and pro-
tect the pilot who would protest.

Myers-Briggs Type Indicator® is a registered
trademark of Consulting Psychologists
Press, Inc.

May 2001 www.stsc.hill.af.mil 31

Managing the Invisible Aspects of High-Performance Teams

In the business world, a proposal for
software development may not have had
the due diligence required to get safely to
the destination. Or margins were shaved
to arrive at a desired cost. Yet time and
again programming staffs assemble for
project flights with no weather forecast
and questionable fuel reserves. And their
superiors expect them to land at their des-
tination on time.

The invisible truth here is that heroes
end up filling the gap in resources by over-
extending themselves and their teams. If
they survive, they are rewarded with a pro-
motion, and the cycle is perpetuated.

There is another subtle point to be
made about the plight of the hero. The
project manager under pressure to deliver
will rarely listen to a good idea if it is out-
side his implementation plan. He has liter-
ally no room to maneuver, since taking
time to listen to something potentially
helpful takes time he does not have.

So, how is the cycle broken to let rem-
edy enter? The answer is not hard to see if
you look outside of the project manage-
ment environment where there is some
discretion. It takes commitment,
resources, and patience.

My firm has the pleasure of assisting
the Software Engineering Process Office, a
part of the Space and Naval Warfare
Systems Center, San Diego, Calif., which
recently earned CMM Level 3 certifica-
tion. The staff, led by Beth Gramoy, has
enjoyed such commitment from Dr. Kolb
in her front office and has offered on-sight
training, pilot programs, and generally
carried this corporate goal into reality. It is
this kind of organic resource and backing
that is required to change an organization’s
culture.
CCaarrtteerr:: In his book, Principle-Centered
Leadership, Stephen Covey [11] points out
that there are numerous systems that fail to
yield to pressure. These systems proceed
based on natural laws or governing princi-
ples, whether we know about and appreci-
ate them or not. Most pilots and their lead-
ers know the maximum speed and range of
their aircraft, so few pilots have to contend
with unreasonable task assignments with
regard to these basic aspects. A small
minority of developers works for executives
who know their teams’ productivity capa-
bilities per code type. The majority of man-
agers act as if the teams’ productivity is

something that can be negotiated and
influenced by applying appropriate moti-
vation and pressure. Yet none would con-
sider negotiating with the crew of a Boeing
747 in an effort to push its maximum
speed past the sound barrier.

Over and over, I hear leaders talk
about achieving the SEI’s CMM Level 3 as
a critical business goal. When I ask them
why they believe this is a critical goal, it
becomes clear they do not really understand
the principles on which the CMM was
built or the natural laws it was designed to
leverage. The main principle beneath the
CMM is that continuous improvement
and leveraging positive experiences help an
organization avoid the black holes from
which common sense is unable to protect it.
Leaders striving to reach Level 3 without
honoring this and other critical principles
may obtain that level and may be allowed
to compete, but neither the intent nor the
real benefit of the model will be realized.
The result is more work and paper with no
real benefit, which damages the approach
in the eyes of those who are forced to oper-
ate in such an environment.

Talking with the people who work
with Gramoy is a wonderful experience.
Here is a fine example of people who have
taken the time to understand the hidden
factors and discover the basic principles
and natural laws. They are embarrassed by
the praise, for the more they learn, the more
they realize that they need to learn. Such
professionals and leaders are a joy to find.

Enjoy the Success

Software engineers must learn to celebrate.
Hidden behind every space shuttle launch
is a grueling schedule that begins when the
landing wheel stops rolling from the previ-
ous mission and ends when the launch
button is depressed to start the next mis-
sion. In the intervening months between
shuttle launches, every component and
sub-component of the Space Transport
System is checked and tracked. There are
literally millions of details that come
together at launch time. Then after all the
painstaking attention to detail, all the dili-
gence, all of the mind-numbing rehearsals,
there is a celebration of the human spirit
like no other on the planet.

While attending a shuttle launch I
happened into a conversation with the bus
driver who was taking us to the viewing

site. All along the trip he would spout facts
and trivia about NASA and the shuttle
program. His enthusiasm was so conta-
gious that the entire bus was lifted to a
higher level of excitement and anticipa-
tion. I learned that he was a NASA engi-
neer who had retired but still enjoyed the
thrill of the launch. He embodied true
passion and delayed gratification. He
never once mentioned the tedious prepa-
rations for launch, the personal sacrifice,
and long hours. However, he gushed with
pride and the sense of accomplishment.

When I was flying with the Blue
Angels, I was routinely struck by the audi-
ence’s general lack of understanding of
what it took to put on a demonstration.
Some thought we improvised our maneu-
vers on the day of the show. Some thought
the planes were somehow mechanically
locked together in the diamond forma-
tion. Very few realized that every maneu-
ver was the result of months of intense
practice and that each maneuver fit
together precisely to form the entire
demonstration.

Often there would be an aircraft
“gripe” that would require nationwide
logistical coordination for the delivery of a
part. The part would be delivered and
installed, and the aircraft test flown before
the next day’s show. And yet, time after
time, the show would go on. The mainte-
nance crew proved to be magicians on a
regular basis, pulling the rabbit out of the
hat just before show time. Then the dia-
mond formation would thunder into the
air, eight engines in afterburner, rising
majestically into the vertical and complete
a loop on take off. Each member of the
maintenance crew would follow the for-
mation skyward and experience a pene-
trating satisfaction. All the pain was erased
as each member of the team drank in the
beauty of what they had helped achieve. It
was a celebration, brief and pure.

Where there is no excitement at com-
pletion there is no passion. Conversely,
where there is a cause worth celebrating,
the passion is inexhaustible. But how can a
project manager recreate a shuttle launch
or a flight demonstration? The reality is
(the invisible part) that within all human
enterprise there are the seeds of satisfac-
tion and accomplishment waiting to be
nourished by a manager who is also a
leader, one who can connect human

32 CR O S S TA L K The Journal of Defense Software Engineering May 2001

Open Forum

May 2001 www.stsc.hill.af.mil 33

endeavor with purpose. When a team can
boast of delivering code on time and with-
in cost, time after time, it will truly differ-
entiate itself in the marketplace. That
alone is worth a celebration.
CCaarrtteerr:: The beginning and the end are the
most critical points. How these are handled
are excellent predictors as to what will hap-
pen in between. One speaker I heard made
an interesting observation that almost
every good book on project management
recommends including a project post-
mortem to capture lessons learned. He goes
on to ask why those same books do not
advise starting each project by reading les-
sons learned.

Acknowledging our humaness and
employing proven methods to obtain our
best is a critical job of every leader. The
Blue Angels have a lot to teach us about
how to build and leverage a high-perform-
ance team. It starts by finding precisely the
right people to be on the team. This is
accomplished by involving those from last
year’s team who will continue on into this
year in the selection process. It continues
with team-building rituals and practices.
Not the meaningless waste of time we have
come to abhor from ill-prepared facilita-
tion “professionals,” but activities specifi-
cally designed and used to build team
respect and trust.

One of the best sources of materials
available for building generic high-per-
formance teams can be found in the Sibbet
and Drexler Graphic Guide to Team
Performance [12]. While not every item in
this guide will be appropriate for every
team, it provides a wealth of tools and just
enough context to help you understand why
you might need to use one.

From Newton, we see the reverence for
those mathematicians who came before
him and his belief that they helped him
reach new heights. From Saint-Exuprey,
we learn that the most important things in
life are seldom easily seen. From the admi-
ral, I have learned that there is more to be
gained by leveraging the advances and
accomplishments of others even when their
domain appears to be unrelated. I believe
there is much more the Blue Angels have to
teach us all, if we will only take the time to
see beyond the obvious to the invisible, and
honor the lessons of those giants who have
been this way before us.

Conclusion

At the end of the day, we will always find
more goals than resources to support
them, more data than understanding,
more complexity than order. This is the
nature of growth. The key is to keep one’s
bearing amidst continuous change, and
always be respectful of the lessons of those
who have gone before us. Hopefully the
insights we have shared have pierced the
veneer of visible reality and offered a view
of important underlying issues that chal-
lenge each of us. Effective metrics needs a
shared understanding, creativity needs dis-
cipline, and strong cultural foundations
stabilize high-performance teaming. We
need to focus on the systemic ills that sur-
round our heroes and find the cause with-
in our task worthy of excitement. ◆

References

1.Basili, Victor R., and Weiss, David M., A
Methodology for Collecting Valid Software
Engineering Data, IEEE Transactions on
Software Engineering SE-10, Nov. 6, 1984,
pp. 728-738.

2.Baumert, John H, and McWhinney, Mark S,
Software Measures and the Capability Maturity
Model, CMU/SEI 92-TR-25, Pittsburgh, Pa.
Software Engineering Institute, Carnegie
Mellon University, September 1992.

3.Florac, William, and Carleton, Anita
Measuring the Software Process: Statistical
Process Control for Software Process
Improvement, (ISBN: 0-201-60444-2)
Addison-Wesley Computer and Engineering
Publishing Group, 1999.

4.Gremba, Jennifer, and Myers, Chuck,
The IDEALSM Model: A Practical
Guide for Improvement, 1997,
www.sei.cmu.edu/ideal/ideal.bridge.
html

5.Senge, Peter M., The Fifth Discipline,(ISBN:
0-385-26094-6) Bantam Doubleday Dell
Publishing Group, 1990.

6.Paulk, Mark C., et. al., The Capability
Maturity Model, (ISBN 0201-54664-7)
Addison-Wesley Publishing Company, 1994.

7.Thuesen, Janet M. and Kroeger, Otto, Type
Talk at Work, (ISBN 0-440-50699-9)
Bantam Doubleday Dell Publishing Group,
1992.

8.Covey, Stephen R., The 7 Habits of Highly
Effective People, (ISBN: 0-671-70863-5) A
Fireside Book, Simon and Schuster, 1989.

9.Schön, Donald A., The Reflective Practitioner,

(ISBN: 0-465-06878-2) Basic Books, Perseus
Books Group, 1983.

10.Williams, Laurie A., and Kessler Robert R.,
All I Really Needed to Know about Pair
Programming I Learned in Kindergarten,
CACM, May 2000, pp. 108-114.

11.Covey, Stephen R., Principle Centered
Leadership, (ISBN: 0-671-79280-6) A
Fireside Book, Simon and Schuster,
1990.

12.Sibbet, David, and Drexler, Allan,
Graphic Guide to Team Performance
(ISBN: 1-879502-09-7) The Grove
Consultants International, 1994.

About the Authors

LLyynnnn RRoobbeerrtt CCaarrtteerr,, Ph.D.,
is a senior member of the
technical staff at Carnegie
Mellon University (CMU) in a
dual appointment at the
Software Engineering
Institute and the School of

Computer Science. The focus of his nearly
12 years at CMU has been on assisting tech-
nical workers, managers, and leaders in ben-
efiting from adopting software technologies
in the context of organizational overload.
Previously, Carter worked for firms includ-
ing Tektronix, Motorola, and a leveraged
buy-out from GenRad.

SSooffttwwaarree EEnnggiinneeeerriinngg IInnssttiittuuttee
CCaarrnneeggiiee MMeelllloonn UUnniivveerrssiittyy
33885577 EEaasstt EEqquueessttrriiaann TTrraaiill
PPhhooeenniixx,, AAZZ 8855004444--33000088
VVooiiccee:: 448800--559988--11224477
EE--mmaaiill:: llrrcc@@sseeii..ccmmuu..eedduu

RADM Patrick Moneymaker
USN (Ret.) is president of
Ocean Systems Engineering
Corporation overseeing full-
spectrum engineering serv-
ices that the firm provides
for the Department of

Defense, including software development,
C4I systems integration, and program man-
agement. Moneymaker retired October
1998 from the Navy as rear admiral having
held information technology positions that
included J6, US Strategic Command and
Commander, and Naval Space Command.

RRAADDMM PPaattrriicckk MMoonneeyymmaakkeerr UUSSNN ((RReett..))
OOSSEECC
33114422 WW.. VViissttaa WWaayy
OOcceeaannssiiddee,, CCAA 9922006644
VVooiiccee:: 776600--772222--33222222
EE--mmaaiill:: ppmmoonneeyymm@@oosseecc..ccoomm

Managing the Invisible Aspects of High-Performance Teams

34 CR O S S TA L K The Journal of Defense Software Engineering April 2001

LL EE TT T ET E RR S T O T HS T O T H E EE E DD I T OI T O RR

Dear CrossTalk
I have used back issues of

C rossTalk often in my software
process improvement work both at
Xerox and Hughes. It is really helpful!

Delores J Harralson
Hughes Space & Communications

Dear CrossTalk
I would like to make available to

C rossTalk readers a tool they can use
at no cost. The successful software oper-
ation demands superior performance on
the factory floor. Many organizations
have made commitments to initiatives
in SEI CMM, ISO 9000, or Six Sigma
in order to deliver superior capability.
Each of these initiatives has one thing in
common, the practice of software
inspections.

Experienced software practitioners
and managers understand that software
development is a process of experimen-
tation involving the continuous discov-
ery of technical information associated
with the function, form, and fit of the
software product. Peer reviews are an
integral practice in the process of exper-
imentation. Software inspections are
the most rigorous form of peer reviews
and an important element in the process
of software product verification.

The National Software Quality
Experiment (NSQE) collects core sam-
ples of software product quality from
the Software Inspection Lab. The
NSQE contains software inspection
results collected during 1992-2000
from dozens of organizations that have
supplied thousands of core samples to
this national database. This database
serves as a calibrating benchmark for
those wishing to reason about software
inspections metrics. A presentation on
the NSQE was made at the STC
Conference 2000 and a C rossTalk
web-article on this appeared in
December 1998.

The NSQE supplies the initial
measurements and metrics needed by an
organization to set its expectations. It
contains the upper and lower control
limits for minutes of preparation effort
per defect, defects per thousand lines of
code, lines inspected per conduct hour,

defects per session, preparation/conduct
effort, and return on investment.

People constantly ask about tools
for software inspections. They also ask
about the National Software Quality
Experiment. This has led to the produc-
tion of a simple, web-based mechanism
to allow users to enter inspection meas-
urements, view the derived metrics, and
calibrate their results with those of the
NSQE.

Participants are invited to conduct
an NSQE assessment and to compare
their software inspections results to the
NSQE benchmark by visiting mem
bers.aol.com/ONeillDon/nsqe-assess
ment.html

Don O’Neill
Independent Consultant
ONeillDon@aol.com

Dear Mr. Alder:
I recently read your opening article

in the January 2001 issue of
C rossTalk, and something you said
caught my attention. You mention some
of the incredible advances that have
been made in the field of modeling and
simulation, and you contrasted these
successes with some areas in which good
simulations seem to be strangely absent.
Those areas are the motivation of this
correspondence.

Specifically, you wrote, “Then
again, why stop with the simulation of
physical objects? I can think of some
human relationships that could use
some practice. For those of you who
have teenagers, I wonder if a simulation
of parent-teen relationships would help.
We spend a lot of time getting educated
in technical subjects and leave to chance
the most challenging aspects of our lives
– human relationships.”

A team of us at the Johns Hopkins
Applied Physics Laboratory has been
working on this very problem for the
past four years, and we agree with you
wholeheartedly. We realize that there is a
large void in the practice that we engage
in when it comes to human relation-
ships, whether it is in the family or on
the job. There are many “soft skills”
rooted in human interaction that we
don’t train for in a virtual environment.

Such as how to talk to kids about drugs,
how to hire good employees, how to tes-
tify in court, how to effectively resolve
conflict in schools, how to talk to angry
customers, and the list goes on.

We have developed a very successful
tool that effectivly trains FBI agents and
allows them to practice detecting decep-
tion in potential suspects. It takes what
they teach at the academy and incorpo-
rates it in a virtual environment through
interaction with a simulated person
named “Mike Simmen.” This tool is
now in use in over 70 federal law
enforcement agencies across the country
and in 20 foreign countries. It is making
a significant impact in giving FBI agents
practice in a human interaction envi-
ronment, learning and practicing this
very essential skill. In the end, it is sav-
ing lives and money because, like in the
flight simulator, the mistakes are made
in the simulation. The tool enables the
agents to “find the right solution
through trial and error and away from
danger.”

We are also about to begin develop-
ing other applications based on the
same technology for other government
sponsors.

Tim Frey
Johns Hopkins University
Applied Physics Lab
Simulated Human
Interaction Development

Dear
I'm having withdrawal ... not hav-

ing C rossTalk to read since I left
Puget Sound Naval Shipyard! The hard
copy will be perfect to read on the
Metro on my way to and from work!

Cathy Ricketts
NAVSEA

Software Odd to See

Ireceived a message from Dave Cook,
principal engineering consultant for the

Software Technology Support Center, who
was scheduled to compose the BackTalk
commentary for this issue. He came down
with laryngitis and has doctor’s orders not
to speak for two days. Now that would be
an interesting sight. Asking Dave Cook
not to chatter for two days is like asking
Mick Jagger to line dance. He asked if I
would fill in. Sure Dave, I know how it is
when the voice goes; the mind can’t be far
behind. Have fun in New Orleans – at the
Software Engineering Process Group
Conference.

I called Pam, CrossTalk’s managing
editor, to ascertain the issue’s theme. The
reception on my cell phone was shoddier
than a tube laden TV in a thunderstorm. I
thought I heard her say the theme was
“Software Odd to See, 2001.” Certainly
odd to me, but you know these imagina-
tive journalists are always trying to be
more creative than Ron Popeil at an
infomercial convention. So I went with it.

What’s odd in the software industry
in 2001? I’ll tell you what’s odd. It’s odd
to see Y2K consultants, who scared the
cash flow out of clients, flipping burgers at
McDonalds because they invested their
spoils in the latest dot-com craze. It’s odd
to see investors astonished by their high
tech, no sweat, easy bet, Internet compa-
nies deflating faster than a helium balloon
at a frat party.

It’s odd to see engineers plaster their
cubicles with Dilbert cartoons and grouse
when they get passed over for manage-

ment positions. It’s odd to see project
managers spend more time in process
improvement meetings than with their
customers. It’s odd to see customers will-
ing to pay more money for software from
a company that has a higher capability
maturity level. I thought they had better
quality, leading to less defects, and thus
reduced costs?

It’s odd to see the Capability Maturity
Model grow more appendages than a
Siamese twin millipede. It’s even odder to
see experts try to integrate those inde-
pendent appendages into a cohesive
model. But most odd to see are customers
clamoring for this new model like contest-
ants during a Survivor immunity chal-
lenge.

It’s odd to see software engineers more
interested in the means (tools, language,
process, etc.) rather than the results (cus-
tomer satisfaction). It’s odd to see software
consultants who have never worked a
complete project. Industry reference
checks are about as scrupulous as a
Clinton pardon review.

It’s odd to see the most effective
process in the industry – inspections – get
the least amount of press. It’s odd to see an
industry, striving so hard to be an engi-
neering discipline, naively jump on every
technology bandwagon that drives
through town. It’s odd to see 75percent of
the English language prefixed with the let-
ter “e.”

It’s odd to see software processes con-
structed with all the demure expertise of
Lucy and Ethel boxing chocolates. It’s odd

to see Software Engineering Process
Groups, trying to improve organizational
maturity, acting like Barney Fife on his
fifth cup of coffee. Even odder is the rank
and file blindly accepting KPA after KPA,
like an inebriated Otis checking into jail,
never questioning why or what for.

It’s odd that after 10 years of rapid
technological advances the words “paper-
less office” have left our vocabulary. After
living through the Ada Dynasty, it’s odd to
see C++ being used on government proj-
ects. It’s odd to see that a “CASE tool” is
once again something you carry work in,
to and from the office.

What’s really odd to see is continued
promotion of the best engineers into man-
agement. Didn’t the Beatles teach us that
writing great songs is not a good prerequi-
site for running the record company? It’s
odd to see software engineers promoted to
management, suddenly and inexplicably
bestowed with years of management wis-
dom. What’s to learn? No need for train-
ing here.

Of course software is odd to see. It’s
intangible. You can see your keyboard,
mouse, and monitor. If you splash water
on your monitor you can see pixels. But
you can’t see software. Many attribute that
fact to all that is odd in the industry.

If you really want to see something
odd take these issues to your boss and ask
for enlightenment. The rationalization
will be as easy to understand as Jar Jar
Binks, on Novocain, reciting Shakespeare.
What an Odyssey.

– Gary Petersen, Shim Enterprise Inc.

BACKTALK

May 2001 www.stsc.hill.af.mil 35

	Cover
	Index
	From the Publisher
	The Spiral Model as a Tool for Evolutionary Acquisition
	Web Sites
	Verification and Validation Implementation at NASA
	The Next Refinement to Software
	Streamlining Brings Oracle Big Savings, Better Service
	Coming Events
	Maintaining the Quality of Black-Box Testing
	Managing the Invisible Aspects of High-Performance Teams
	Letters to the Editor
	BackTalk
	Back Cover

